// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4MuMscModel.hh,v 1.4 2007/11/09 19:48:09 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-01-patch-02 $ // // ------------------------------------------------------------------- // // // GEANT4 Class header file // // // File name: G4MuMscModel // // Author: V.Ivanchenko on base of L.Urban model // // Creation date: 25.10.2007 // // Modifications: // // // Class Description: // // Implementation of the model of multiple scattering based on // H.W.Lewis Phys Rev 78 (1950) 526 and L.Urban model // ------------------------------------------------------------------- // #ifndef G4MuMscModel_h #define G4MuMscModel_h 1 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #include "G4eCoulombScatteringModel.hh" #include "G4PhysicsTable.hh" #include "G4MscStepLimitType.hh" #include "G4MaterialCutsCouple.hh" class G4LossTableManager; class G4ParticleChangeForMSC; class G4SafetyHelper; //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... class G4MuMscModel : public G4eCoulombScatteringModel { public: G4MuMscModel(G4double frange = 0.2, G4double thetaMax = 0.04, G4double tMax = TeV*TeV, const G4String& nam = "MuMscUni"); virtual ~G4MuMscModel(); void Initialise(const G4ParticleDefinition*, const G4DataVector&); G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut = DBL_MAX, G4double emax= DBL_MAX); void SampleScattering(const G4DynamicParticle*, G4double safety); void SampleSecondaries(std::vector*, const G4MaterialCutsCouple*, const G4DynamicParticle*, G4double, G4double); G4double ComputeTruePathLengthLimit(const G4Track& track, G4PhysicsTable* theLambdaTable, G4double currentMinimalStep); G4double ComputeGeomPathLength(G4double truePathLength); G4double ComputeTrueStepLength(G4double geomStepLength); inline void SetStepLimitType(G4MscStepLimitType); inline void SetLateralDisplasmentFlag(G4bool val); inline G4double GetLambda(G4double kinEnergy); inline G4double GetLambda2(G4double kinEnergy); // inline void SetThetaLimit(G4double); inline void SetRangeFactor(G4double); private: void BuildTables(); G4double ComputeLambda2(G4double kinEnergy, G4double cut); inline void DefineMaterial(const G4MaterialCutsCouple*); // hide assignment operator G4MuMscModel & operator=(const G4MuMscModel &right); G4MuMscModel(const G4MuMscModel&); G4ParticleChangeForMSC* fParticleChange; G4SafetyHelper* safetyHelper; G4PhysicsTable* theLambdaTable; G4PhysicsTable* theLambda2Table; G4LossTableManager* theManager; const G4DataVector* currentCuts; G4double dtrl; G4double facrange; G4double thetaLimit; G4double numlimit; G4double tlimitminfix; G4double invsqrt12; G4double lowBinEnergy; G4double highBinEnergy; // cash G4double preKinEnergy; G4double xSection; G4double ecut; G4double lambda0; G4double tPathLength; G4double zPathLength; G4double lambdaeff; G4double currentRange; G4double par1; G4double par2; G4double par3; G4int currentMaterialIndex; G4int nbins; G4int nwarnings; G4int nwarnlimit; const G4MaterialCutsCouple* currentCouple; G4MscStepLimitType steppingAlgorithm; G4bool samplez; G4bool latDisplasment; G4bool isInitialized; G4bool buildTables; G4bool newrun; G4bool inside; }; //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... inline void G4MuMscModel::SetLateralDisplasmentFlag(G4bool val) { latDisplasment = val; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... /* inline void G4MuMscModel::SetThetaLimit(G4double val) { thetaLimit = val; } */ //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... inline void G4MuMscModel::SetRangeFactor(G4double val) { facrange = val; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... inline void G4MuMscModel::SetStepLimitType(G4MscStepLimitType val) { steppingAlgorithm = val; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... inline void G4MuMscModel::DefineMaterial(const G4MaterialCutsCouple* cup) { if(cup != currentCouple) { currentCouple = cup; currentMaterialIndex = currentCouple->GetIndex(); } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... inline G4double G4MuMscModel::GetLambda(G4double e) { G4double x; if(theLambdaTable) { G4bool b; x = ((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b); } else { x = CrossSection(currentCouple,particle,e); } if(x > DBL_MIN) x = 1./x; else x = DBL_MAX; return x; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... inline G4double G4MuMscModel::GetLambda2(G4double e) { G4double x; if(theLambda2Table) { G4bool b; x = ((*theLambda2Table)[currentMaterialIndex])->GetValue(e, b); } else { x = ComputeLambda2(e, (*currentCuts)[currentMaterialIndex]); } return x; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #endif