// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4PolarizedBhabhaCrossSection.cc,v 1.5 2007/11/01 17:32:34 schaelic Exp $ // GEANT4 tag $Name: $ // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4PolarizedBhabhaCrossSection // // Author: Andreas Schaelicke // // Creation date: 12.01.2006 // // Modifications: // 16-01-06 included cross section as calculated by P.Starovoitov // 24-08-06 bugfix in total cross section (A. Schaelicke) // 07-11-06 modify reference system for polarisation vectors // (A. Schaelicke & P.Starovoitov) // // Class Description: // * calculates the differential cross section // incomming positron Kpl(along positive z direction) scatters at // an electron Kmn at rest // * phi denotes the angle between the scattering plane (defined by the // outgoing electron) and X-axis // * all stokes vectors refer to spins in the Global System (X,Y,Z) // #include "G4PolarizedBhabhaCrossSection.hh" G4PolarizedBhabhaCrossSection::G4PolarizedBhabhaCrossSection() { } G4PolarizedBhabhaCrossSection::~G4PolarizedBhabhaCrossSection() { } void G4PolarizedBhabhaCrossSection::Initialize( G4double e, G4double gamma, G4double /*phi*/, const G4StokesVector & pol0, const G4StokesVector & pol1, G4int flag) { SetXmax(1.); G4double re2 = classic_electr_radius * classic_electr_radius; G4double gamma2 = gamma*gamma; G4double gamma3 = gamma2*gamma; G4double gmo = (gamma - 1.); G4double gmo2 = (gamma - 1.)*(gamma - 1.); G4double gmo3 = gmo2*(gamma - 1.); G4double gpo = (gamma + 1.); G4double gpo2 = (gamma + 1.)*(gamma + 1.); G4double gpo3 = gpo2*(gamma + 1.); G4double gpo12 = std::sqrt(gpo); G4double gpo32 = gpo*gpo12; G4double gpo52 = gpo2*gpo12; G4double pref = re2/(gamma - 1.0); G4double sqrttwo=std::sqrt(2.); G4double d = std::sqrt(1./e - 1.); G4double e2 = e*e; G4double e3 = e2*e; // *** new *** G4double gmo12 = std::sqrt(gmo); G4double gmo32 = gmo*gmo12; G4double egmp32 = std::pow(e*(2 + e*gmo)*gpo,(3./2.)); G4double e32 = e*std::sqrt(e); G4bool polarized=(!pol0.IsZero())||(!pol1.IsZero()); if (flag==0) polarized=false; // Unpolarised part of XS // *AS* UnpME . OK phi0 = 0.; phi0+= e2*gmo3/gpo3; phi0+= -2.*e*gamma*gmo2/gpo3; phi0+= (3.*gamma2 + 6.*gamma + 4.)*gmo/gpo3; phi0+= -(2.*gamma2 + 4.*gamma + 1.)/(e*gpo2); phi0+= gamma2/(e2*(gamma2 - 1.)); phi0*=0.25; // Initial state polarisarion dependence if (polarized) { // G4cout<<"Polarized differential Bhabha cross section"<=1) { // // Final Positron Ppl // // initial positron Kpl if (!pol0.IsZero()) { G4double xxPplKpl = -((-1 + e)*(e*gmo - gamma)*(-(gamma*gpo) + e*(-2 + gamma + gamma2)))/ (4*e2*gpo*std::sqrt(gmo*gpo*(-1 + e + gamma - e*gamma)* (1 + e + gamma - e*gamma))); G4double xyPplKpl = 0; G4double xzPplKpl = ((e*gmo - gamma)*(-1 - gamma + e*gmo*(1 + 2*gamma)))/ (2*sqrttwo*e32*gmo*gpo2*std::sqrt(1 + e + gamma - e*gamma)); G4double yxPplKpl = 0; G4double yyPplKpl = (gamma2*gpo + e2*gmo2*(3 + gamma) - e*gmo*(1 + 2*gamma*(2 + gamma)))/(4*e2*gmo*gpo2); G4double yzPplKpl = 0; G4double zxPplKpl = ((e*gmo - gamma)*(1 + e*(-1 + 2*e*gmo - 2*gamma)*gmo + gamma))/ (2*sqrttwo*e*gmo*gpo2*std::sqrt(e*(1 + e + gamma - e*gamma))); G4double zyPplKpl = 0; G4double zzPplKpl = -((e*gmo - gamma)*std::sqrt((1 - e)/(e - e*gamma2 + gpo2))* (2*e2*gmo2 + gamma + gamma2 - e*(-2 + gamma + gamma2)))/ (4*e2*(-1 + gamma2)); phi2[0] += xxPplKpl*pol0.x() + xyPplKpl*pol0.y() + xzPplKpl*pol0.z(); phi2[1] += yxPplKpl*pol0.x() + yyPplKpl*pol0.y() + yzPplKpl*pol0.z(); phi2[2] += zxPplKpl*pol0.x() + zyPplKpl*pol0.y() + zzPplKpl*pol0.z(); } // initial electron Kmn if (!pol1.IsZero()) { G4double xxPplKmn = ((-1 + e)*(e*(-2 + gamma)*gmo + gamma))/(4*e*gpo32*std::sqrt(1 + e2*gmo + gamma - 2*e*gamma)); G4double xyPplKmn = 0; G4double xzPplKmn = (-1 + e*gmo + gmo*gamma)/(2*sqrttwo*gpo2* std::sqrt(e*(1 + e + gamma - e*gamma))); G4double yxPplKmn = 0; G4double yyPplKmn = (-1 - 2*gamma + e*gmo*(3 + gamma))/(4*e*gpo2); G4double yzPplKmn = 0; G4double zxPplKmn = (1 + 2*e2*gmo2 + gamma + gamma2 + e*(1 + (3 - 4*gamma)*gamma))/ (2*sqrttwo*gpo2*std::sqrt(e*(1 + e + gamma - e*gamma))); G4double zyPplKmn = 0; G4double zzPplKmn = -(std::sqrt((1 - e)/(e - e*gamma2 + gpo2))* (2*e2*gmo2 + gamma + 2*gamma2 + e*(2 + gamma - 3*gamma2)))/(4*e*gpo); phi2[0] += xxPplKmn*pol1.x() + xyPplKmn*pol1.y() + xzPplKmn*pol1.z(); phi2[1] += yxPplKmn*pol1.x() + yyPplKmn*pol1.y() + yzPplKmn*pol1.z(); phi2[2] += zxPplKmn*pol1.x() + zyPplKmn*pol1.y() + zzPplKmn*pol1.z(); } // // Final Electron Pmn // // initial positron Kpl if (!pol0.IsZero()) { G4double xxPmnKpl = ((-1 + e*gmo)*(2 + gamma))/(4*gpo* std::sqrt(e*(2 + e*gmo)*gpo)); G4double xyPmnKpl = 0; G4double xzPmnKpl = (std::sqrt((-1 + e)/(-2 + e - e*gamma))* (e + gamma + e*gamma - 2*(-1 + e)*gamma2))/(2*sqrttwo*e*gpo2); G4double yxPmnKpl = 0; G4double yyPmnKpl = (-1 - 2*gamma + e*gmo*(3 + gamma))/(4*e*gpo2); G4double yzPmnKpl = 0; G4double zxPmnKpl = -((-1 + e)*(1 + 2*e*gmo)*(e*gmo - gamma))/ (2*sqrttwo*e*std::sqrt(-((-1 + e)*(2 + e*gmo)))*gpo2); G4double zyPmnKpl = 0; G4double zzPmnKpl = (-2 + 2*e2*gmo2 + gamma*(-1 + 2*gamma) + e*(-2 + (5 - 3*gamma)*gamma))/(4*std::sqrt(e*(2 + e*gmo))* gpo32); phi3[0] += xxPmnKpl*pol0.x() + xyPmnKpl*pol0.y() + xzPmnKpl*pol0.z(); phi3[1] += yxPmnKpl*pol0.x() + yyPmnKpl*pol0.y() + yzPmnKpl*pol0.z(); phi3[2] += zxPmnKpl*pol0.x() + zyPmnKpl*pol0.y() + zzPmnKpl*pol0.z(); } // initial electron Kmn if (!pol1.IsZero()) { G4double xxPmnKmn = -((2 + e*gmo)*(-1 + e*gmo - gamma)*(e*gmo - gamma)* (-2 + gamma))/(4*gmo*egmp32); G4double xyPmnKmn = 0; G4double xzPmnKmn = ((e*gmo - gamma)* std::sqrt((-1 + e + gamma - e*gamma)/(2 + e*gmo))* (e + gamma - e*gamma + gamma2))/ (2*sqrttwo*e2*gmo32*gpo2); G4double yxPmnKmn = 0; G4double yyPmnKmn = (gamma2*gpo + e2*gmo2*(3 + gamma) - e*gmo*(1 + 2*gamma*(2 + gamma)))/(4*e2*gmo*gpo2); G4double yzPmnKmn = 0; G4double zxPmnKmn = -((-1 + e)*(e*gmo - gamma)*(e*gmo + 2*e2*gmo2 - gamma*gpo))/ (2*sqrttwo*e2*std::sqrt(-((-1 + e)*(2 + e*gmo)))* gmo*gpo2); G4double zyPmnKmn = 0; G4double zzPmnKmn = ((e*gmo - gamma)*std::sqrt(e/((2 + e*gmo)*gpo))* (-(e*(-2 + gamma)*gmo) + 2*e2*gmo2 + (-2 + gamma)*gpo))/(4*e2*(-1 + gamma2)); phi3[0] += xxPmnKmn*pol1.x() + xyPmnKmn*pol1.y() + xzPmnKmn*pol1.z(); phi3[1] += yxPmnKmn*pol1.x() + yyPmnKmn*pol1.y() + yzPmnKmn*pol1.z(); phi3[2] += zxPmnKmn*pol1.x() + zyPmnKmn*pol1.y() + zzPmnKmn*pol1.z(); } } phi0 *= pref; phi2 *= pref; phi3 *= pref; } G4double G4PolarizedBhabhaCrossSection::XSection(const G4StokesVector & pol2, const G4StokesVector & pol3) { G4double xs=0.; xs+=phi0; G4bool polarized=(!pol2.IsZero())||(!pol3.IsZero()); if (polarized) { xs+=phi2*pol2 + phi3*pol3; } return xs; } G4double G4PolarizedBhabhaCrossSection::TotalXSection( G4double xmin, G4double xmax, G4double gamma, const G4StokesVector & pol0,const G4StokesVector & pol1) { G4double xs=0.; G4double x=xmin; if (xmax != 1.) G4cout<<" warning xmax expected to be 1 but is "< electron radius^2; G4double re2 = classic_electr_radius * classic_electr_radius; G4double gamma2=gamma*gamma; G4double gmo2 = (gamma - 1.)*(gamma - 1.); G4double gpo2 = (gamma + 1.)*(gamma + 1.); G4double gpo3 = gpo2*(gamma + 1.); G4double logMEM = std::log(x); G4double pref = twopi*re2/(gamma - 1.0); // unpolarise XS G4double sigma0 = 0.; sigma0 += -gmo2*(gamma - 1.)*x*x*x/3. + gmo2*gamma*x*x; sigma0 += -(gamma - 1.)*(3.*gamma*(gamma + 2.) +4.)*x; sigma0 += (gamma*(gamma*(gamma*(4.*gamma - 1.) - 21.) - 7.)+13.)/(3.*(gamma - 1.)); sigma0 /= gpo3; sigma0 += logMEM*(2. - 1./gpo2); sigma0 += gamma2/((gamma2 - 1.)*x); // longitudinal part G4double sigma2=0.; sigma2 += logMEM*gamma*(gamma + 1.)*(2.*gamma + 1.); sigma2 += gamma*(7.*gamma*(gamma + 1.) - 2.)/3.; sigma2 += -(3.*gamma + 1.)*(gamma2 + gamma - 1.)*x; sigma2 += (gamma - 1.)*gamma*(gamma + 3.)*x*x; sigma2 += -gmo2*(gamma + 3.)*x*x*x/3.; sigma2 /= gpo3; // transverse part G4double sigma3=0.; sigma3 += 0.5*(gamma + 1.)*(3.*gamma + 1.)*logMEM; sigma3 += (gamma*(5.*gamma - 4.) - 13.)/6.; sigma3 += 0.5*(gamma2 + 3.)*x; sigma3 += - 2.*(gamma - 1.)*gamma*x*x; // *AS* changed sign sigma3 += 2.*gmo2*x*x*x/3.; sigma3 /= gpo3; // total cross section xs+=pref*(sigma0 + sigma2*pol0.z()*pol1.z() + sigma3*(pol0.x()*pol1.x()+pol0.y()*pol1.y())); return xs; } G4StokesVector G4PolarizedBhabhaCrossSection::GetPol2() { // Note, mean polarization can not contain correlation // effects. return 1./phi0 * phi2; } G4StokesVector G4PolarizedBhabhaCrossSection::GetPol3() { // Note, mean polarization can not contain correlation // effects. return 1./phi0 * phi3; }