| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4PolarizedMollerCrossSection.cc,v 1.5 2007/11/01 17:32:34 schaelic Exp $
|
|---|
| [1196] | 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| [819] | 28 | // -------------------------------------------------------------------
|
|---|
| 29 | //
|
|---|
| 30 | // GEANT4 Class file
|
|---|
| 31 | //
|
|---|
| 32 | //
|
|---|
| 33 | // File name: G4PolarizedMollerCrossSection
|
|---|
| 34 | //
|
|---|
| 35 | // Author: Andreas Schaelicke
|
|---|
| 36 | //
|
|---|
| 37 | // Creation date: 12.01.2006
|
|---|
| 38 | //
|
|---|
| 39 | // Modifications:
|
|---|
| 40 | // 16-01-06 included cross section as calculated by P.Starovoitov
|
|---|
| 41 | //
|
|---|
| 42 | // Class Description:
|
|---|
| 43 | // * calculates the differential cross section
|
|---|
| 44 | // incomming electron K1(along positive z direction) scatters at an electron K2 at rest
|
|---|
| 45 | // * phi denotes the angle between the scattering plane (defined by the
|
|---|
| 46 | // outgoing electron) and X-axis
|
|---|
| 47 | // * all stokes vectors refer to spins in the Global System (X,Y,Z)
|
|---|
| 48 | //
|
|---|
| 49 |
|
|---|
| 50 | #include "G4PolarizedMollerCrossSection.hh"
|
|---|
| 51 |
|
|---|
| 52 | G4PolarizedMollerCrossSection::G4PolarizedMollerCrossSection()
|
|---|
| 53 | {
|
|---|
| 54 | SetXmax(.5);
|
|---|
| 55 | }
|
|---|
| 56 | G4PolarizedMollerCrossSection::~G4PolarizedMollerCrossSection() {}
|
|---|
| 57 | void G4PolarizedMollerCrossSection::Initialize(
|
|---|
| 58 | G4double e,
|
|---|
| 59 | G4double gamma,
|
|---|
| 60 | G4double /*phi*/,
|
|---|
| 61 | const G4StokesVector & pol0,
|
|---|
| 62 | const G4StokesVector & pol1,
|
|---|
| 63 | G4int flag)
|
|---|
| 64 | {
|
|---|
| 65 | G4double re2 = classic_electr_radius * classic_electr_radius;
|
|---|
| 66 | G4double gamma2=gamma*gamma;
|
|---|
| 67 | G4double gmo = (gamma - 1.);
|
|---|
| 68 | G4double gmo2 = (gamma - 1.)*(gamma - 1.);
|
|---|
| 69 | G4double gpo = (gamma + 1.);
|
|---|
| 70 | G4double pref = gamma2*re2/(gmo2*(gamma + 1.0));
|
|---|
| 71 | G4double sqrttwo=std::sqrt(2.);
|
|---|
| 72 | G4double f = (-1. + e);
|
|---|
| 73 | G4double e2 = e*e;
|
|---|
| 74 | G4double f2 = f*f;
|
|---|
| 75 | // G4double w = e*(1. - e);
|
|---|
| 76 |
|
|---|
| 77 | G4bool polarized=(!pol0.IsZero())||(!pol1.IsZero());
|
|---|
| 78 |
|
|---|
| 79 | if (flag==0) polarized=false;
|
|---|
| 80 | // Unpolarised part of XS
|
|---|
| 81 | phi0 = 0.;
|
|---|
| 82 | phi0+= gmo2/gamma2;
|
|---|
| 83 | phi0+= ((1. - 2.*gamma)/gamma2)*(1./e + 1./(1.-e));
|
|---|
| 84 | phi0+= 1./(e*e) + 1./((1. - e)*(1. - e));
|
|---|
| 85 | phi0*=0.25;
|
|---|
| 86 | // Initial state polarisarion dependence
|
|---|
| 87 | if (polarized) {
|
|---|
| 88 | G4double usephi=1.;
|
|---|
| 89 | if (flag<=1) usephi=0.;
|
|---|
| 90 | // G4cout<<"Polarized differential moller cross section"<<G4endl;
|
|---|
| 91 | // G4cout<<"Initial state polarisation contributions"<<G4endl;
|
|---|
| 92 | // G4cout<<"Diagonal Matrix Elements"<<G4endl;
|
|---|
| 93 | G4double xx = (gamma - f*e*gmo*(3 + gamma))/(4*f*e*gamma2);
|
|---|
| 94 | G4double yy = (-1 + f*e*gmo2 + 2*gamma)/(4*f*e*gamma2);
|
|---|
| 95 | G4double zz = (-(e*gmo*(3 + gamma)) + e2*gmo*(3 + gamma) +
|
|---|
| 96 | gamma*(-1 + 2*gamma))/(4*f*e*gamma2);
|
|---|
| 97 |
|
|---|
| 98 | phi0 += xx*pol0.x()*pol1.x() + yy*pol0.y()*pol1.y() + zz*pol0.z()*pol1.z();
|
|---|
| 99 |
|
|---|
| 100 | if (usephi==1.) {
|
|---|
| 101 | // G4cout<<"Non-diagonal Matrix Elements"<<G4endl;
|
|---|
| 102 | G4double xy = 0;
|
|---|
| 103 | G4double xz = -((-1 + 2*e)*gmo)/(2*sqrttwo*gamma2*
|
|---|
| 104 | std::sqrt(-((f*e)/gpo)));
|
|---|
| 105 | G4double yx = 0;
|
|---|
| 106 | G4double yz = 0;
|
|---|
| 107 | G4double zx = -((-1 + 2*e)*gmo)/(2*sqrttwo*gamma2*
|
|---|
| 108 | std::sqrt(-((f*e)/gpo)));
|
|---|
| 109 | G4double zy = 0;
|
|---|
| 110 | phi0+=yx*pol0.y()*pol1.x() + xy*pol0.x()*pol1.y();
|
|---|
| 111 | phi0+=zx*pol0.z()*pol1.x() + xz*pol0.x()*pol1.z();
|
|---|
| 112 | phi0+=zy*pol0.z()*pol1.y() + yz*pol0.y()*pol1.z();
|
|---|
| 113 | }
|
|---|
| 114 | }
|
|---|
| 115 | // Final state polarisarion dependence
|
|---|
| 116 | phi2=G4ThreeVector();
|
|---|
| 117 | phi3=G4ThreeVector();
|
|---|
| 118 |
|
|---|
| 119 | if (flag>=1) {
|
|---|
| 120 | //
|
|---|
| 121 | // Final Electron P1
|
|---|
| 122 | //
|
|---|
| 123 |
|
|---|
| 124 | // initial electron K1
|
|---|
| 125 | if (!pol0.IsZero()) {
|
|---|
| 126 | G4double xxP1K1 = (std::sqrt(gpo/(1 + e2*gmo + gamma - 2*e*gamma))*
|
|---|
| 127 | (gamma - e*gpo))/(4*e2*gamma);
|
|---|
| 128 | G4double xyP1K1 = 0;
|
|---|
| 129 | G4double xzP1K1 = (-1 + 2*e*gamma)/(2*sqrttwo*f*gamma*
|
|---|
| 130 | std::sqrt(e*e2*(1 + e + gamma - e*gamma)));
|
|---|
| 131 | G4double yxP1K1 = 0;
|
|---|
| 132 | G4double yyP1K1 = (-gamma2 + e*(-1 + gamma*(2 + gamma)))/(4*f*e2*gamma2);
|
|---|
| 133 | G4double yzP1K1 = 0;
|
|---|
| 134 | G4double zxP1K1 = (1 + 2*e2*gmo - 2*e*gamma)/(2*sqrttwo*f*e*gamma*
|
|---|
| 135 | std::sqrt(e*(1 + e + gamma - e*gamma)));
|
|---|
| 136 | G4double zyP1K1 = 0;
|
|---|
| 137 | G4double zzP1K1 = (-gamma + e*(1 - 2*e*gmo + gamma))/(4*f*e2*gamma*
|
|---|
| 138 | std::sqrt(1 - (2*e)/(f*gpo)));
|
|---|
| 139 | phi2[0] += xxP1K1*pol0.x() + xyP1K1*pol0.y() + xzP1K1*pol0.z();
|
|---|
| 140 | phi2[1] += yxP1K1*pol0.x() + yyP1K1*pol0.y() + yzP1K1*pol0.z();
|
|---|
| 141 | phi2[2] += zxP1K1*pol0.x() + zyP1K1*pol0.y() + zzP1K1*pol0.z();
|
|---|
| 142 | }
|
|---|
| 143 | // initial electron K2
|
|---|
| 144 | if (!pol1.IsZero()) {
|
|---|
| 145 | G4double xxP1K2 = ((1 + e*(-3 + gamma))*std::sqrt(gpo/(1 + e2*gmo + gamma -
|
|---|
| 146 | 2*e*gamma)))/(4*f*e*gamma);
|
|---|
| 147 | G4double xyP1K2 = 0;
|
|---|
| 148 | G4double xzP1K2 = (-2 + 2*e + gamma)/(2*sqrttwo*f2*gamma*
|
|---|
| 149 | std::sqrt(e*(1 + e + gamma - e*gamma)));
|
|---|
| 150 | G4double yxP1K2 = 0;
|
|---|
| 151 | G4double yyP1K2 = (1 - 2*gamma + e*(-1 + gamma*(2 + gamma)))/(4*f2*e*gamma2);
|
|---|
| 152 | G4double yzP1K2 = 0;
|
|---|
| 153 | G4double zxP1K2 = (2*e*(1 + e*gmo - 2*gamma) + gamma)/(2*sqrttwo*f2*gamma*
|
|---|
| 154 | std::sqrt(e*(1 + e + gamma - e*gamma)));
|
|---|
| 155 | G4double zyP1K2 = 0;
|
|---|
| 156 | G4double zzP1K2 = (1 - 2*gamma + e*(-1 - 2*e*gmo + 3*gamma))/
|
|---|
| 157 | (4*f2*e*gamma*std::sqrt(1 - (2*e)/(f*gpo)));
|
|---|
| 158 | phi2[0] += xxP1K2*pol1.x() + xyP1K2*pol1.y() + xzP1K2*pol1.z();
|
|---|
| 159 | phi2[1] += yxP1K2*pol1.x() + yyP1K2*pol1.y() + yzP1K2*pol1.z();
|
|---|
| 160 | phi2[2] += zxP1K2*pol1.x() + zyP1K2*pol1.y() + zzP1K2*pol1.z();
|
|---|
| 161 | }
|
|---|
| 162 | //
|
|---|
| 163 | // Final Electron P2
|
|---|
| 164 | //
|
|---|
| 165 |
|
|---|
| 166 | // initial electron K1
|
|---|
| 167 | if (!pol0.IsZero()) {
|
|---|
| 168 |
|
|---|
| 169 |
|
|---|
| 170 | G4double xxP2K1 = (-1 + e + e*gamma)/(4*f2*gamma*
|
|---|
| 171 | std::sqrt((e*(2 + e*gmo))/gpo));
|
|---|
| 172 | G4double xyP2K1 = 0;
|
|---|
| 173 | G4double xzP2K1 = -((1 + 2*f*gamma)*std::sqrt(f/(-2 + e - e*gamma)))/
|
|---|
| 174 | (2*sqrttwo*f2*e*gamma);
|
|---|
| 175 | G4double yxP2K1 = 0;
|
|---|
| 176 | G4double yyP2K1 = (1 - 2*gamma + e*(-1 + gamma*(2 + gamma)))/(4*f2*e*gamma2);
|
|---|
| 177 | G4double yzP2K1 = 0;
|
|---|
| 178 | G4double zxP2K1 = (1 + 2*e*(-2 + e + gamma - e*gamma))/(2*sqrttwo*f*e*
|
|---|
| 179 | std::sqrt(-(f*(2 + e*gmo)))*gamma);
|
|---|
| 180 | G4double zyP2K1 = 0;
|
|---|
| 181 | G4double zzP2K1 = (std::sqrt((e*gpo)/(2 + e*gmo))*
|
|---|
| 182 | (-3 + e*(5 + 2*e*gmo - 3*gamma) + 2*gamma))/(4*f2*e*gamma);
|
|---|
| 183 |
|
|---|
| 184 | phi3[0] += xxP2K1*pol0.x() + xyP2K1*pol0.y() + xzP2K1*pol0.z();
|
|---|
| 185 | phi3[1] += yxP2K1*pol0.x() + yyP2K1*pol0.y() + yzP2K1*pol0.z();
|
|---|
| 186 | phi3[2] += zxP2K1*pol0.x() + zyP2K1*pol0.y() + zzP2K1*pol0.z();
|
|---|
| 187 | }
|
|---|
| 188 | // initial electron K2
|
|---|
| 189 | if (!pol1.IsZero()) {
|
|---|
| 190 |
|
|---|
| 191 | G4double xxP2K2 = (-2 - e*(-3 + gamma) + gamma)/
|
|---|
| 192 | (4*f*e*gamma* std::sqrt((e*(2 + e*gmo))/gpo));
|
|---|
| 193 | G4double xyP2K2 = 0;
|
|---|
| 194 | G4double xzP2K2 = ((-2*e + gamma)*std::sqrt(f/(-2 + e - e*gamma)))/
|
|---|
| 195 | (2*sqrttwo*f*e2*gamma);
|
|---|
| 196 | G4double yxP2K2 = 0;
|
|---|
| 197 | G4double yyP2K2 = (-gamma2 + e*(-1 + gamma*(2 + gamma)))/(4*f*e2*gamma2);
|
|---|
| 198 | G4double yzP2K2 = 0;
|
|---|
| 199 | G4double zxP2K2 = (gamma + 2*e*(-1 + e - e*gamma))/
|
|---|
| 200 | (2*sqrttwo*e2* std::sqrt(-(f*(2 + e*gmo)))*gamma);
|
|---|
| 201 | G4double zyP2K2 = 0;
|
|---|
| 202 | G4double zzP2K2 = (std::sqrt((e*gpo)/(2 + e*gmo))*
|
|---|
| 203 | (-2 + e*(3 + 2*e*gmo - gamma) + gamma))/(4*f*e2*gamma);
|
|---|
| 204 | phi3[0] += xxP2K2*pol1.x() + xyP2K2*pol1.y() + xzP2K2*pol1.z();
|
|---|
| 205 | phi3[1] += yxP2K2*pol1.x() + yyP2K2*pol1.y() + yzP2K2*pol1.z();
|
|---|
| 206 | phi3[2] += zxP2K2*pol1.x() + zyP2K2*pol1.y() + zzP2K2*pol1.z();
|
|---|
| 207 | }
|
|---|
| 208 | }
|
|---|
| 209 | phi0 *= pref;
|
|---|
| 210 | phi2 *= pref;
|
|---|
| 211 | phi3 *= pref;
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 | G4double G4PolarizedMollerCrossSection::XSection(const G4StokesVector & pol2,
|
|---|
| 215 | const G4StokesVector & pol3)
|
|---|
| 216 | {
|
|---|
| 217 | G4double xs=0.;
|
|---|
| 218 | xs+=phi0;
|
|---|
| 219 |
|
|---|
| 220 | G4bool polarized=(!pol2.IsZero())||(!pol3.IsZero());
|
|---|
| 221 | if (polarized) {
|
|---|
| 222 | xs+=phi2*pol2 + phi3*pol3;
|
|---|
| 223 | }
|
|---|
| 224 | return xs;
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | G4double G4PolarizedMollerCrossSection::TotalXSection(
|
|---|
| 228 | G4double xmin, G4double xmax, G4double gamma,
|
|---|
| 229 | const G4StokesVector & pol0,const G4StokesVector & pol1)
|
|---|
| 230 | {
|
|---|
| 231 | G4double xs=0.;
|
|---|
| 232 |
|
|---|
| 233 | G4double x=xmin;
|
|---|
| 234 |
|
|---|
| 235 | if (xmax != 1./2.) G4cout<<" warning xmax expected to be 1/2 but is "<<xmax<< G4endl;
|
|---|
| 236 |
|
|---|
| 237 | // re -> electron radius^2;
|
|---|
| 238 | G4double re2 = classic_electr_radius * classic_electr_radius;
|
|---|
| 239 | G4double gamma2=gamma*gamma;
|
|---|
| 240 | G4double gmo2 = (gamma - 1.)*(gamma - 1.);
|
|---|
| 241 | G4double logMEM = std::log(1./x - 1.);
|
|---|
| 242 | G4double pref = twopi*gamma2*re2/(gmo2*(gamma + 1.0));
|
|---|
| 243 | // unpolarise XS
|
|---|
| 244 | G4double sigma0 = 0.;
|
|---|
| 245 | sigma0 += (gmo2/gamma2)*(0.5 - x);
|
|---|
| 246 | sigma0 += ((1. - 2.*gamma)/gamma2)*logMEM;
|
|---|
| 247 | sigma0 += 1./x - 1./(1. - x);
|
|---|
| 248 | // longitudinal part
|
|---|
| 249 | G4double sigma2=0.;
|
|---|
| 250 | sigma2 += ((gamma2 + 2.*gamma - 3.)/gamma2)*(0.5 - x);
|
|---|
| 251 | sigma2 += (1./gamma - 2.)*logMEM;
|
|---|
| 252 | // transverse part
|
|---|
| 253 | G4double sigma3=0.;
|
|---|
| 254 | sigma3 += (2.*(1. - gamma)/gamma2)*(0.5 - x);
|
|---|
| 255 | sigma3 += (1. - 3.*gamma)/(2.*gamma2)*logMEM;
|
|---|
| 256 | // total cross section
|
|---|
| 257 | xs+=pref*(sigma0 + sigma2*pol0.z()*pol1.z() + sigma3*(pol0.x()*pol1.x()+pol0.y()*pol1.y()));
|
|---|
| 258 |
|
|---|
| 259 | return xs;
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 |
|
|---|
| 263 | G4StokesVector G4PolarizedMollerCrossSection::GetPol2()
|
|---|
| 264 | {
|
|---|
| 265 | // Note, mean polarization can not contain correlation
|
|---|
| 266 | // effects.
|
|---|
| 267 | return 1./phi0 * phi2;
|
|---|
| 268 | }
|
|---|
| 269 | G4StokesVector G4PolarizedMollerCrossSection::GetPol3()
|
|---|
| 270 | {
|
|---|
| 271 | // Note, mean polarization can not contain correlation
|
|---|
| 272 | // effects.
|
|---|
| 273 | return 1./phi0 * phi3;
|
|---|
| 274 | }
|
|---|