// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4VPolarizedCrossSection.cc,v 1.4 2007/11/01 17:32:34 schaelic Exp $ // GEANT4 tag $Name: geant4-09-02 $ // File name: G4VPolarizedCrossSection // // Author: Andreas Schaelicke // // Creation date: 15.05.2005 // // Modifications: // // Class Description: // (pure virtual) interface class // // provides readable but efficient routines to determine // polarization for the final state of a given process // empoying the differential cross section // #include "G4VPolarizedCrossSection.hh" #include "Randomize.hh" G4VPolarizedCrossSection::G4VPolarizedCrossSection() : fXmin(0), fXmax(1.), fYmin(1.), theA(1), theZ(1), fCoul(0.) { } G4VPolarizedCrossSection::~G4VPolarizedCrossSection() { } void G4VPolarizedCrossSection::Initialize(G4double, G4double, G4double, const G4StokesVector &, const G4StokesVector &, G4int ) { } G4StokesVector G4VPolarizedCrossSection::GetPol2() { // neglects correlation effects! G4double invXsecTotal=1./XSection(G4StokesVector::ZERO,G4StokesVector::ZERO); G4double xsPol1=XSection(G4StokesVector::P1,G4StokesVector::ZERO); G4double xsPol2=XSection(G4StokesVector::P2,G4StokesVector::ZERO); G4double xsPol3=XSection(G4StokesVector::P3,G4StokesVector::ZERO); return G4ThreeVector(invXsecTotal*xsPol1,invXsecTotal*xsPol2,invXsecTotal*xsPol3); } G4StokesVector G4VPolarizedCrossSection::GetPol3() { // neglects correlation effects! G4double invXsecTotal=1./XSection(G4StokesVector::ZERO,G4StokesVector::ZERO); G4double xsPol1=XSection(G4StokesVector::ZERO,G4StokesVector::P1); G4double xsPol2=XSection(G4StokesVector::ZERO,G4StokesVector::P2); G4double xsPol3=XSection(G4StokesVector::ZERO,G4StokesVector::P3); return G4ThreeVector(invXsecTotal*xsPol1,invXsecTotal*xsPol2,invXsecTotal*xsPol3); } // minimal energy fraction in TotalXSection G4double G4VPolarizedCrossSection::GetXmin(G4double /*y*/) { return fXmin; } // maximal energy fraction in TotalXSection G4double G4VPolarizedCrossSection::GetXmax(G4double /*y*/) { return fXmax; } /* void G4VPolarizedCrossSection::DicePolarization() { // can respect correlation effects, but is limited to // one quantization axis! G4double sigma[4]; sigma[0]=XSection(G4StokesVector::P3,G4StokesVector::P3); sigma[1]=XSection(G4StokesVector::P3,G4StokesVector::M3); sigma[2]=XSection(G4StokesVector::M3,G4StokesVector::P3); sigma[3]=XSection(G4StokesVector::M3,G4StokesVector::M3); G4double sigma_max = 4. * XSection(G4StokesVector::ZERO,G4StokesVector::ZERO); for (G4int i=0;i<4;++i) { G4cout<<"sigma="<sigma_max) { G4cout<<"ERROR G4VPolarizedCrossSection::DicePolarization(["<0) sigma[i]+=sigma[i-1]; } G4int k = 0; G4double disc = sigma[3]*G4UniformRand(); while (sigma[k]