// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PAIxSection.hh,v 1.15 2008/05/30 16:04:40 grichine Exp $ // GEANT4 tag $Name: geant4-09-02 $ // // // G4PAIxSection.hh -- header file // // GEANT 4 class header file --- Copyright CERN 1995 // CERB Geneva Switzerland // // for information related to this code, please, contact // CERN, CN Division, ASD Group // // Preparation of ionizing collision cross section according to Photo Absorption // Ionization (PAI) model for simulation of ionization energy losses in very thin // absorbers. Author: Vladimir.Grichine@cern.ch // // History: // // 19.10.03, V. Grichine: Integral dEdx was added for G4PAIModel class // // 13.05.03, V. Grichine: Numerical instability was fixed in SumOverInterval/Border // functions // 10.02.02, V. Grichine: New functions and arrays/gets for Cerenkov and // plasmon collisions dN/dx // 27.10.99, V. Grichine: Bug fixed in constructors, 3rd constructor and // GetStepEnergyLoss(step) were added, fDelta = 0.005 // 30.11.97, V. Grichine: 2nd version // 11.06.97, V. Grichine: 1st version #ifndef G4PAIXSECTION_HH #define G4PAIXSECTION_HH #include "G4ios.hh" #include "globals.hh" #include "Randomize.hh" #include"G4SandiaTable.hh" class G4MaterialCutsCouple; class G4Sandiatable; class G4PAIxSection { public: // Constructors G4PAIxSection( G4MaterialCutsCouple* matCC); G4PAIxSection( G4int materialIndex, G4double maxEnergyTransfer ); G4PAIxSection( G4int materialIndex, // for proton loss table G4double maxEnergyTransfer, G4double betaGammaSq , G4double** photoAbsCof, G4int intNumber ); G4PAIxSection( G4int materialIndex, // test constructor G4double maxEnergyTransfer, G4double betaGammaSq ); // G4PAIxSection(const G4PAIxSection& right); // Destructor ~G4PAIxSection(); // Operators // G4PAIxSection& operator=(const G4PAIxSection& right); // G4int operator==(const G4PAIxSection& right)const; // G4int operator!=(const G4PAIxSection& right)const; // Methods // General control functions void InitPAI(); void NormShift( G4double betaGammaSq ); void SplainPAI( G4double betaGammaSq ); // Physical methods G4double RutherfordIntegral( G4int intervalNumber, G4double limitLow, G4double limitHigh ); G4double ImPartDielectricConst( G4int intervalNumber, G4double energy ); G4double GetPhotonRange( G4double energy ); G4double GetElectronRange( G4double energy ); G4double RePartDielectricConst(G4double energy); G4double DifPAIxSection( G4int intervalNumber, G4double betaGammaSq ); G4double PAIdNdxCerenkov( G4int intervalNumber, G4double betaGammaSq ); G4double PAIdNdxMM( G4int intervalNumber, G4double betaGammaSq ); G4double PAIdNdxPlasmon( G4int intervalNumber, G4double betaGammaSq ); G4double PAIdNdxResonance( G4int intervalNumber, G4double betaGammaSq ); void IntegralPAIxSection(); void IntegralCerenkov(); void IntegralMM(); void IntegralPlasmon(); void IntegralResonance(); G4double SumOverInterval(G4int intervalNumber); G4double SumOverIntervaldEdx(G4int intervalNumber); G4double SumOverInterCerenkov(G4int intervalNumber); G4double SumOverInterMM(G4int intervalNumber); G4double SumOverInterPlasmon(G4int intervalNumber); G4double SumOverInterResonance(G4int intervalNumber); G4double SumOverBorder( G4int intervalNumber, G4double energy ); G4double SumOverBorderdEdx( G4int intervalNumber, G4double energy ); G4double SumOverBordCerenkov( G4int intervalNumber, G4double energy ); G4double SumOverBordMM( G4int intervalNumber, G4double energy ); G4double SumOverBordPlasmon( G4int intervalNumber, G4double energy ); G4double SumOverBordResonance( G4int intervalNumber, G4double energy ); G4double GetStepEnergyLoss( G4double step ); G4double GetStepCerenkovLoss( G4double step ); G4double GetStepMMLoss( G4double step ); G4double GetStepPlasmonLoss( G4double step ); G4double GetStepResonanceLoss( G4double step ); G4double GetEnergyTransfer(); G4double GetCerenkovEnergyTransfer(); G4double GetMMEnergyTransfer(); G4double GetPlasmonEnergyTransfer(); G4double GetResonanceEnergyTransfer(); G4double GetRutherfordEnergyTransfer(); // Inline access functions G4int GetNumberOfGammas() const { return fNumberOfGammas; } G4int GetSplineSize() const { return fSplineNumber; } G4int GetIntervalNumber() const { return fIntervalNumber; } G4double GetEnergyInterval(G4int i){ return fEnergyInterval[i]; } G4double GetDifPAIxSection(G4int i){ return fDifPAIxSection[i]; } G4double GetPAIdNdxCerenkov(G4int i){ return fdNdxCerenkov[i]; } G4double GetPAIdNdxMM(G4int i){ return fdNdxMM[i]; } G4double GetPAIdNdxPlasmon(G4int i){ return fdNdxPlasmon[i]; } G4double GetPAIdNdxResonance(G4int i){ return fdNdxResonance[i]; } G4double GetMeanEnergyLoss() const {return fIntegralPAIxSection[0]; } G4double GetMeanCerenkovLoss() const {return fIntegralCerenkov[0]; } G4double GetMeanMMLoss() const {return fIntegralMM[0]; } G4double GetMeanPlasmonLoss() const {return fIntegralPlasmon[0]; } G4double GetMeanResonanceLoss() const {return fIntegralResonance[0]; } G4double GetNormalizationCof() const { return fNormalizationCof; } inline G4double GetPAItable(G4int i,G4int j) const; inline G4double GetLorentzFactor(G4int i) const; inline G4double GetSplineEnergy(G4int i) const; inline G4double GetIntegralPAIxSection(G4int i) const; inline G4double GetIntegralPAIdEdx(G4int i) const; inline G4double GetIntegralCerenkov(G4int i) const; inline G4double GetIntegralMM(G4int i) const; inline G4double GetIntegralPlasmon(G4int i) const; inline G4double GetIntegralResonance(G4int i) const; protected : private : // Local class constants static const G4double fDelta; // energy shift from interval border = 0.001 static const G4double fError; // error in lin-log approximation = 0.005 static G4int fNumberOfGammas; // = 111; static const G4double fLorentzFactor[112]; // static gamma array static const G4int fRefGammaNumber ; // The number of gamma for creation of spline (15) G4int fIntervalNumber ; // The number of energy intervals G4double fNormalizationCof; // Normalization cof for PhotoAbsorptionXsection // G4double fBetaGammaSq; // (beta*gamma)^2 G4int fMaterialIndex; // current material index G4double fDensity; // Current density G4double fElectronDensity; // Current electron (number) density G4int fSplineNumber; // Current size of spline // Arrays of Sandia coefficients G4OrderedTable* fMatSandiaMatrix; G4SandiaTable* fSandia; G4double* fEnergyInterval; G4double* fA1; G4double* fA2; G4double* fA3; G4double* fA4; static const G4int fMaxSplineSize ; // Max size of output splain arrays = 500 /* ****************** G4double* fSplineEnergy; // energy points of splain G4double* fRePartDielectricConst; // Real part of dielectric const G4double* fImPartDielectricConst; // Imaginary part of dielectric const G4double* fIntegralTerm; // Integral term in PAI cross section G4double* fDifPAIxSection; // Differential PAI cross section G4double* fIntegralPAIxSection; // Integral PAI cross section ? */ /////////////// G4double fSplineEnergy[500]; // energy points of splain G4double fRePartDielectricConst[500]; // Real part of dielectric const G4double fImPartDielectricConst[500]; // Imaginary part of dielectric const G4double fIntegralTerm[500]; // Integral term in PAI cross section G4double fDifPAIxSection[500]; // Differential PAI cross section G4double fdNdxCerenkov[500]; // dNdx of Cerenkov collisions G4double fdNdxMM[500]; // dNdx of MM-Cerenkov collisions G4double fdNdxPlasmon[500]; // dNdx of Plasmon collisions G4double fdNdxResonance[500]; // dNdx of resonance collisions G4double fIntegralPAIxSection[500]; // Integral PAI cross section ? G4double fIntegralPAIdEdx[500]; // Integral PAI dEdx ? G4double fIntegralCerenkov[500]; // Integral Cerenkov N>omega ? G4double fIntegralMM[500]; // Integral MM-Cerenkov N>omega ? G4double fIntegralPlasmon[500]; // Integral Plasmon N>omega ? G4double fIntegralResonance[500]; // Integral resonance N>omega ? G4double fPAItable[500][112]; // Output array }; //////////////// Inline methods ////////////////////////////////// // inline G4double G4PAIxSection::GetPAItable(G4int i, G4int j) const { return fPAItable[i][j]; } inline G4double G4PAIxSection::GetLorentzFactor(G4int j) const { return fLorentzFactor[j]; } inline G4double G4PAIxSection::GetSplineEnergy(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIxSection::GetSplineEnergy"); } return fSplineEnergy[i]; } inline G4double G4PAIxSection::GetIntegralPAIxSection(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIxSection::GetIntegralPAIxSection"); } return fIntegralPAIxSection[i]; } inline G4double G4PAIxSection::GetIntegralPAIdEdx(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIxSection::GetIntegralPAIxSection"); } return fIntegralPAIdEdx[i]; } inline G4double G4PAIxSection::GetIntegralCerenkov(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIxSection::GetIntegralCerenkov"); } return fIntegralCerenkov[i]; } inline G4double G4PAIxSection::GetIntegralMM(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIxSection::GetIntegralMM"); } return fIntegralMM[i]; } inline G4double G4PAIxSection::GetIntegralPlasmon(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIxSection::GetIntegralPlasmon"); } return fIntegralPlasmon[i]; } inline G4double G4PAIxSection::GetIntegralResonance(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIxSection::GetIntegralResonance"); } return fIntegralResonance[i]; } #endif // ----------------- end of G4PAIxSection header file -------------------