// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PAIySection.hh,v 1.1 2007/10/01 17:45:14 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // // G4PAIySection.hh -- header file // // // Preparation of ionizing collision cross section according to Photo Absorption // Ionization (PAI) model for simulation of ionization energy losses in very thin // absorbers. Author: Vladimir.Grichine@cern.ch // // History: // // 01.10.07, V.Ivanchenko create using V.Grichine G4PAIxSection class #ifndef G4PAIYSECTION_HH #define G4PAIYSECTION_HH #include "G4ios.hh" #include "globals.hh" #include "Randomize.hh" #include "G4SandiaTable.hh" class G4PAIySection { public: G4PAIySection(); ~G4PAIySection(); void Initialize(const G4Material* material, G4double maxEnergyTransfer, G4double betaGammaSq); void InitPAI() ; void NormShift( G4double betaGammaSq ) ; void SplainPAI( G4double betaGammaSq ) ; // Physical methods G4double RutherfordIntegral( G4int intervalNumber, G4double limitLow, G4double limitHigh ) ; G4double ImPartDielectricConst( G4int intervalNumber, G4double energy ) ; G4double RePartDielectricConst(G4double energy) ; G4double DifPAIySection( G4int intervalNumber, G4double betaGammaSq ) ; G4double PAIdNdxCerenkov( G4int intervalNumber, G4double betaGammaSq ) ; G4double PAIdNdxPlasmon( G4int intervalNumber, G4double betaGammaSq ) ; void IntegralPAIySection() ; void IntegralCerenkov() ; void IntegralPlasmon() ; G4double SumOverInterval(G4int intervalNumber) ; G4double SumOverIntervaldEdx(G4int intervalNumber) ; G4double SumOverInterCerenkov(G4int intervalNumber) ; G4double SumOverInterPlasmon(G4int intervalNumber) ; G4double SumOverBorder( G4int intervalNumber, G4double energy ) ; G4double SumOverBorderdEdx( G4int intervalNumber, G4double energy ) ; G4double SumOverBordCerenkov( G4int intervalNumber, G4double energy ) ; G4double SumOverBordPlasmon( G4int intervalNumber, G4double energy ) ; G4double GetStepEnergyLoss( G4double step ) ; G4double GetStepCerenkovLoss( G4double step ) ; G4double GetStepPlasmonLoss( G4double step ) ; // Inline access functions G4int GetNumberOfGammas() const { return fNumberOfGammas ; } G4int GetSplineSize() const { return fSplineNumber ; } G4int GetIntervalNumber() const { return fIntervalNumber ; } G4double GetEnergyInterval(G4int i){ return fEnergyInterval[i] ; } G4double GetDifPAIySection(G4int i){ return fDifPAIySection[i] ; } G4double GetPAIdNdxCrenkov(G4int i){ return fdNdxCerenkov[i] ; } G4double GetPAIdNdxPlasmon(G4int i){ return fdNdxPlasmon[i] ; } G4double GetMeanEnergyLoss() const {return fIntegralPAIySection[0] ; } G4double GetMeanCerenkovLoss() const {return fIntegralCerenkov[0] ; } G4double GetMeanPlasmonLoss() const {return fIntegralPlasmon[0] ; } G4double GetNormalizationCof() const { return fNormalizationCof ; } inline G4double GetPAItable(G4int i,G4int j) const ; inline G4double GetLorentzFactor(G4int i) const ; inline G4double GetSplineEnergy(G4int i) const ; inline G4double GetIntegralPAIySection(G4int i) const ; inline G4double GetIntegralPAIdEdx(G4int i) const ; inline G4double GetIntegralCerenkov(G4int i) const ; inline G4double GetIntegralPlasmon(G4int i) const ; private : // Local class constants static const G4double fDelta ; // energy shift from interval border = 0.001 static const G4double fError ; // error in lin-log approximation = 0.005 static G4int fNumberOfGammas ; // = 111 ; static const G4double fLorentzFactor[112] ; // static gamma array static const G4int fRefGammaNumber ; // The number of gamma for creation of spline (15) G4int fIntervalNumber ; // The number of energy intervals G4double fNormalizationCof ; // Normalization cof for PhotoAbsorptionXsection G4double fDensity ; // Current density G4double fElectronDensity ; // Current electron (number) density G4int fSplineNumber ; // Current size of spline G4SandiaTable* fSandia; G4double fEnergyInterval[500] ; G4double fA1[500] ; G4double fA2[500] ; G4double fA3[500] ; G4double fA4[500] ; static const G4int fMaxSplineSize ; // Max size of output splain arrays = 500 G4double fSplineEnergy[500] ; // energy points of splain G4double fRePartDielectricConst[500] ; // Real part of dielectric const G4double fImPartDielectricConst[500] ; // Imaginary part of dielectric const G4double fIntegralTerm[500] ; // Integral term in PAI cross section G4double fDifPAIySection[500] ; // Differential PAI cross section G4double fdNdxCerenkov[500] ; // dNdx of Cerenkov collisions G4double fdNdxPlasmon[500] ; // dNdx of Plasmon collisions G4double fIntegralPAIySection[500] ; // Integral PAI cross section ? G4double fIntegralPAIdEdx[500] ; // Integral PAI dEdx ? G4double fIntegralCerenkov[500] ; // Integral Cerenkov N>omega ? G4double fIntegralPlasmon[500] ; // Integral Plasmon N>omega ? G4double fPAItable[500][112] ; // Output array } ; //////////////// Inline methods ////////////////////////////////// // inline G4double G4PAIySection::GetPAItable(G4int i, G4int j) const { return fPAItable[i][j] ; } inline G4double G4PAIySection::GetLorentzFactor(G4int j) const { return fLorentzFactor[j] ; } inline G4double G4PAIySection::GetSplineEnergy(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIySection::GetSplineEnergy"); } return fSplineEnergy[i] ; } inline G4double G4PAIySection::GetIntegralPAIySection(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIySection::GetIntegralPAIySection"); } return fIntegralPAIySection[i] ; } inline G4double G4PAIySection::GetIntegralPAIdEdx(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIySection::GetIntegralPAIySection"); } return fIntegralPAIdEdx[i] ; } inline G4double G4PAIySection::GetIntegralCerenkov(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIySection::GetIntegralCerenkov"); } return fIntegralCerenkov[i] ; } inline G4double G4PAIySection::GetIntegralPlasmon(G4int i) const { if(i < 1 || i > fSplineNumber) { G4Exception("Invalid argument in G4PAIySection::GetIntegralPlasmon"); } return fIntegralPlasmon[i] ; } #endif // ----------------- end of G4PAIySection header file -------------------