| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| [1055] | 26 | // $Id: G4BetheHeitlerModel.cc,v 1.13 2009/04/09 18:41:18 vnivanch Exp $
|
|---|
| [1196] | 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| [819] | 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4BetheHeitlerModel
|
|---|
| 35 | //
|
|---|
| 36 | // Author: Vladimir Ivanchenko on base of Michel Maire code
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 15.03.2005
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| 41 | // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
|
|---|
| 42 | // 24-06-05 Increase number of bins to 200 (V.Ivantchenko)
|
|---|
| 43 | // 16-11-05 replace shootBit() by G4UniformRand() mma
|
|---|
| 44 | // 04-12-05 SetProposedKineticEnergy(0.) for the killed photon (mma)
|
|---|
| 45 | // 20-02-20 SelectRandomElement is called for any initial gamma energy
|
|---|
| 46 | // in order to have selected element for polarized model (VI)
|
|---|
| 47 | //
|
|---|
| 48 | // Class Description:
|
|---|
| 49 | //
|
|---|
| 50 | // -------------------------------------------------------------------
|
|---|
| 51 | //
|
|---|
| 52 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 53 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 54 |
|
|---|
| 55 | #include "G4BetheHeitlerModel.hh"
|
|---|
| 56 | #include "G4Electron.hh"
|
|---|
| 57 | #include "G4Positron.hh"
|
|---|
| 58 | #include "G4Gamma.hh"
|
|---|
| 59 | #include "Randomize.hh"
|
|---|
| 60 | #include "G4DataVector.hh"
|
|---|
| 61 | #include "G4PhysicsLogVector.hh"
|
|---|
| 62 | #include "G4ParticleChangeForGamma.hh"
|
|---|
| [961] | 63 | #include "G4LossTableManager.hh"
|
|---|
| [819] | 64 |
|
|---|
| 65 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 66 |
|
|---|
| 67 | using namespace std;
|
|---|
| 68 |
|
|---|
| 69 | G4BetheHeitlerModel::G4BetheHeitlerModel(const G4ParticleDefinition*,
|
|---|
| 70 | const G4String& nam)
|
|---|
| 71 | : G4VEmModel(nam),
|
|---|
| 72 | theCrossSectionTable(0),
|
|---|
| [961] | 73 | nbins(10)
|
|---|
| [819] | 74 | {
|
|---|
| [961] | 75 | fParticleChange = 0;
|
|---|
| [819] | 76 | theGamma = G4Gamma::Gamma();
|
|---|
| 77 | thePositron = G4Positron::Positron();
|
|---|
| 78 | theElectron = G4Electron::Electron();
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 82 |
|
|---|
| 83 | G4BetheHeitlerModel::~G4BetheHeitlerModel()
|
|---|
| 84 | {
|
|---|
| 85 | if(theCrossSectionTable) {
|
|---|
| 86 | theCrossSectionTable->clearAndDestroy();
|
|---|
| 87 | delete theCrossSectionTable;
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 92 |
|
|---|
| 93 | void G4BetheHeitlerModel::Initialise(const G4ParticleDefinition*,
|
|---|
| 94 | const G4DataVector&)
|
|---|
| 95 | {
|
|---|
| [1055] | 96 | if(!fParticleChange) fParticleChange = GetParticleChangeForGamma();
|
|---|
| [819] | 97 |
|
|---|
| 98 | if(theCrossSectionTable) {
|
|---|
| 99 | theCrossSectionTable->clearAndDestroy();
|
|---|
| 100 | delete theCrossSectionTable;
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | const G4ElementTable* theElementTable = G4Element::GetElementTable();
|
|---|
| 104 | size_t nvect = G4Element::GetNumberOfElements();
|
|---|
| 105 | theCrossSectionTable = new G4PhysicsTable(nvect);
|
|---|
| 106 | G4PhysicsLogVector* ptrVector;
|
|---|
| 107 | G4double emin = LowEnergyLimit();
|
|---|
| 108 | G4double emax = HighEnergyLimit();
|
|---|
| [961] | 109 | G4int n = nbins*G4int(log10(emax/emin));
|
|---|
| 110 | G4bool spline = G4LossTableManager::Instance()->SplineFlag();
|
|---|
| [819] | 111 | G4double e, value;
|
|---|
| 112 |
|
|---|
| 113 | for(size_t j=0; j<nvect ; j++) {
|
|---|
| 114 |
|
|---|
| [961] | 115 | ptrVector = new G4PhysicsLogVector(emin, emax, n);
|
|---|
| 116 | ptrVector->SetSpline(spline);
|
|---|
| [819] | 117 | G4double Z = (*theElementTable)[j]->GetZ();
|
|---|
| 118 | G4int iz = G4int(Z);
|
|---|
| 119 | indexZ[iz] = j;
|
|---|
| 120 |
|
|---|
| 121 | for(G4int i=0; i<nbins; i++) {
|
|---|
| 122 | e = ptrVector->GetLowEdgeEnergy( i ) ;
|
|---|
| 123 | value = ComputeCrossSectionPerAtom(theGamma, e, Z);
|
|---|
| 124 | ptrVector->PutValue( i, value );
|
|---|
| 125 | }
|
|---|
| 126 |
|
|---|
| 127 | theCrossSectionTable->insert(ptrVector);
|
|---|
| 128 | }
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 132 |
|
|---|
| 133 | G4double G4BetheHeitlerModel::ComputeCrossSectionPerAtom(
|
|---|
| 134 | const G4ParticleDefinition*,
|
|---|
| 135 | G4double GammaEnergy, G4double Z,
|
|---|
| 136 | G4double, G4double, G4double)
|
|---|
| 137 | // Calculates the microscopic cross section in GEANT4 internal units.
|
|---|
| 138 | // A parametrized formula from L. Urban is used to estimate
|
|---|
| 139 | // the total cross section.
|
|---|
| 140 | // It gives a good description of the data from 1.5 MeV to 100 GeV.
|
|---|
| 141 | // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEnergy-2electronmass)
|
|---|
| 142 | // *(GammaEnergy-2electronmass)
|
|---|
| 143 | {
|
|---|
| 144 | static const G4double GammaEnergyLimit = 1.5*MeV;
|
|---|
| 145 | G4double CrossSection = 0.0 ;
|
|---|
| 146 | if ( Z < 1. ) return CrossSection;
|
|---|
| 147 | if ( GammaEnergy <= 2.0*electron_mass_c2 ) return CrossSection;
|
|---|
| 148 |
|
|---|
| 149 | static const G4double
|
|---|
| 150 | a0= 8.7842e+2*microbarn, a1=-1.9625e+3*microbarn, a2= 1.2949e+3*microbarn,
|
|---|
| 151 | a3=-2.0028e+2*microbarn, a4= 1.2575e+1*microbarn, a5=-2.8333e-1*microbarn;
|
|---|
| 152 |
|
|---|
| 153 | static const G4double
|
|---|
| 154 | b0=-1.0342e+1*microbarn, b1= 1.7692e+1*microbarn, b2=-8.2381 *microbarn,
|
|---|
| 155 | b3= 1.3063 *microbarn, b4=-9.0815e-2*microbarn, b5= 2.3586e-3*microbarn;
|
|---|
| 156 |
|
|---|
| 157 | static const G4double
|
|---|
| 158 | c0=-4.5263e+2*microbarn, c1= 1.1161e+3*microbarn, c2=-8.6749e+2*microbarn,
|
|---|
| 159 | c3= 2.1773e+2*microbarn, c4=-2.0467e+1*microbarn, c5= 6.5372e-1*microbarn;
|
|---|
| 160 |
|
|---|
| 161 | G4double GammaEnergySave = GammaEnergy;
|
|---|
| 162 | if (GammaEnergy < GammaEnergyLimit) GammaEnergy = GammaEnergyLimit ;
|
|---|
| 163 |
|
|---|
| 164 | G4double X=log(GammaEnergy/electron_mass_c2), X2=X*X, X3=X2*X, X4=X3*X, X5=X4*X;
|
|---|
| 165 |
|
|---|
| 166 | G4double F1 = a0 + a1*X + a2*X2 + a3*X3 + a4*X4 + a5*X5,
|
|---|
| 167 | F2 = b0 + b1*X + b2*X2 + b3*X3 + b4*X4 + b5*X5,
|
|---|
| 168 | F3 = c0 + c1*X + c2*X2 + c3*X3 + c4*X4 + c5*X5;
|
|---|
| 169 |
|
|---|
| 170 | CrossSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3);
|
|---|
| 171 |
|
|---|
| 172 | if (GammaEnergySave < GammaEnergyLimit) {
|
|---|
| 173 |
|
|---|
| 174 | X = (GammaEnergySave - 2.*electron_mass_c2)
|
|---|
| 175 | / (GammaEnergyLimit - 2.*electron_mass_c2);
|
|---|
| 176 | CrossSection *= X*X;
|
|---|
| 177 | }
|
|---|
| 178 |
|
|---|
| 179 | if (CrossSection < 0.) CrossSection = 0.;
|
|---|
| 180 | return CrossSection;
|
|---|
| 181 | }
|
|---|
| 182 |
|
|---|
| 183 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 184 |
|
|---|
| 185 | void G4BetheHeitlerModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
|
|---|
| 186 | const G4MaterialCutsCouple* couple,
|
|---|
| 187 | const G4DynamicParticle* aDynamicGamma,
|
|---|
| 188 | G4double,
|
|---|
| 189 | G4double)
|
|---|
| 190 | // The secondaries e+e- energies are sampled using the Bethe - Heitler
|
|---|
| 191 | // cross sections with Coulomb correction.
|
|---|
| 192 | // A modified version of the random number techniques of Butcher & Messel
|
|---|
| 193 | // is used (Nuc Phys 20(1960),15).
|
|---|
| 194 | //
|
|---|
| 195 | // GEANT4 internal units.
|
|---|
| 196 | //
|
|---|
| 197 | // Note 1 : Effects due to the breakdown of the Born approximation at
|
|---|
| 198 | // low energy are ignored.
|
|---|
| 199 | // Note 2 : The differential cross section implicitly takes account of
|
|---|
| 200 | // pair creation in both nuclear and atomic electron fields.
|
|---|
| 201 | // However triplet prodution is not generated.
|
|---|
| 202 | {
|
|---|
| 203 | const G4Material* aMaterial = couple->GetMaterial();
|
|---|
| 204 |
|
|---|
| 205 | G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
|
|---|
| 206 | G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
|
|---|
| 207 |
|
|---|
| 208 | G4double epsil ;
|
|---|
| 209 | G4double epsil0 = electron_mass_c2/GammaEnergy ;
|
|---|
| 210 | if(epsil0 > 1.0) return;
|
|---|
| 211 |
|
|---|
| 212 | // do it fast if GammaEnergy < 2. MeV
|
|---|
| 213 | static const G4double Egsmall=2.*MeV;
|
|---|
| 214 |
|
|---|
| 215 | // select randomly one element constituing the material
|
|---|
| 216 | const G4Element* anElement = SelectRandomAtom(aMaterial, theGamma, GammaEnergy);
|
|---|
| 217 |
|
|---|
| 218 | if (GammaEnergy < Egsmall) {
|
|---|
| 219 |
|
|---|
| 220 | epsil = epsil0 + (0.5-epsil0)*G4UniformRand();
|
|---|
| 221 |
|
|---|
| 222 | } else {
|
|---|
| 223 | // now comes the case with GammaEnergy >= 2. MeV
|
|---|
| 224 |
|
|---|
| 225 | // Extract Coulomb factor for this Element
|
|---|
| 226 | G4double FZ = 8.*(anElement->GetIonisation()->GetlogZ3());
|
|---|
| 227 | if (GammaEnergy > 50.*MeV) FZ += 8.*(anElement->GetfCoulomb());
|
|---|
| 228 |
|
|---|
| 229 | // limits of the screening variable
|
|---|
| 230 | G4double screenfac = 136.*epsil0/(anElement->GetIonisation()->GetZ3());
|
|---|
| 231 | G4double screenmax = exp ((42.24 - FZ)/8.368) - 0.952 ;
|
|---|
| 232 | G4double screenmin = min(4.*screenfac,screenmax);
|
|---|
| 233 |
|
|---|
| 234 | // limits of the energy sampling
|
|---|
| 235 | G4double epsil1 = 0.5 - 0.5*sqrt(1. - screenmin/screenmax) ;
|
|---|
| 236 | G4double epsilmin = max(epsil0,epsil1) , epsilrange = 0.5 - epsilmin;
|
|---|
| 237 |
|
|---|
| 238 | //
|
|---|
| 239 | // sample the energy rate of the created electron (or positron)
|
|---|
| 240 | //
|
|---|
| 241 | //G4double epsil, screenvar, greject ;
|
|---|
| 242 | G4double screenvar, greject ;
|
|---|
| 243 |
|
|---|
| 244 | G4double F10 = ScreenFunction1(screenmin) - FZ;
|
|---|
| 245 | G4double F20 = ScreenFunction2(screenmin) - FZ;
|
|---|
| 246 | G4double NormF1 = max(F10*epsilrange*epsilrange,0.);
|
|---|
| 247 | G4double NormF2 = max(1.5*F20,0.);
|
|---|
| 248 |
|
|---|
| 249 | do {
|
|---|
| 250 | if ( NormF1/(NormF1+NormF2) > G4UniformRand() ) {
|
|---|
| 251 | epsil = 0.5 - epsilrange*pow(G4UniformRand(), 0.333333);
|
|---|
| 252 | screenvar = screenfac/(epsil*(1-epsil));
|
|---|
| 253 | greject = (ScreenFunction1(screenvar) - FZ)/F10;
|
|---|
| 254 |
|
|---|
| 255 | } else {
|
|---|
| 256 | epsil = epsilmin + epsilrange*G4UniformRand();
|
|---|
| 257 | screenvar = screenfac/(epsil*(1-epsil));
|
|---|
| 258 | greject = (ScreenFunction2(screenvar) - FZ)/F20;
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 | } while( greject < G4UniformRand() );
|
|---|
| 262 |
|
|---|
| 263 | } // end of epsil sampling
|
|---|
| 264 |
|
|---|
| 265 | //
|
|---|
| 266 | // fixe charges randomly
|
|---|
| 267 | //
|
|---|
| 268 |
|
|---|
| 269 | G4double ElectTotEnergy, PositTotEnergy;
|
|---|
| 270 | if (G4UniformRand() > 0.5) {
|
|---|
| 271 |
|
|---|
| 272 | ElectTotEnergy = (1.-epsil)*GammaEnergy;
|
|---|
| 273 | PositTotEnergy = epsil*GammaEnergy;
|
|---|
| 274 |
|
|---|
| 275 | } else {
|
|---|
| 276 |
|
|---|
| 277 | PositTotEnergy = (1.-epsil)*GammaEnergy;
|
|---|
| 278 | ElectTotEnergy = epsil*GammaEnergy;
|
|---|
| 279 | }
|
|---|
| 280 |
|
|---|
| 281 | //
|
|---|
| 282 | // scattered electron (positron) angles. ( Z - axis along the parent photon)
|
|---|
| 283 | //
|
|---|
| 284 | // universal distribution suggested by L. Urban
|
|---|
| 285 | // (Geant3 manual (1993) Phys211),
|
|---|
| 286 | // derived from Tsai distribution (Rev Mod Phys 49,421(1977))
|
|---|
| 287 |
|
|---|
| 288 | G4double u;
|
|---|
| 289 | const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ;
|
|---|
| 290 |
|
|---|
| 291 | if (9./(9.+d) >G4UniformRand()) u= - log(G4UniformRand()*G4UniformRand())/a1;
|
|---|
| 292 | else u= - log(G4UniformRand()*G4UniformRand())/a2;
|
|---|
| 293 |
|
|---|
| 294 | G4double TetEl = u*electron_mass_c2/ElectTotEnergy;
|
|---|
| 295 | G4double TetPo = u*electron_mass_c2/PositTotEnergy;
|
|---|
| 296 | G4double Phi = twopi * G4UniformRand();
|
|---|
| 297 | G4double dxEl= sin(TetEl)*cos(Phi),dyEl= sin(TetEl)*sin(Phi),dzEl=cos(TetEl);
|
|---|
| 298 | G4double dxPo=-sin(TetPo)*cos(Phi),dyPo=-sin(TetPo)*sin(Phi),dzPo=cos(TetPo);
|
|---|
| 299 |
|
|---|
| 300 | //
|
|---|
| 301 | // kinematic of the created pair
|
|---|
| 302 | //
|
|---|
| 303 | // the electron and positron are assumed to have a symetric
|
|---|
| 304 | // angular distribution with respect to the Z axis along the parent photon.
|
|---|
| 305 |
|
|---|
| 306 | G4double ElectKineEnergy = max(0.,ElectTotEnergy - electron_mass_c2);
|
|---|
| 307 |
|
|---|
| 308 | G4ThreeVector ElectDirection (dxEl, dyEl, dzEl);
|
|---|
| 309 | ElectDirection.rotateUz(GammaDirection);
|
|---|
| 310 |
|
|---|
| 311 | // create G4DynamicParticle object for the particle1
|
|---|
| 312 | G4DynamicParticle* aParticle1= new G4DynamicParticle(
|
|---|
| 313 | theElectron,ElectDirection,ElectKineEnergy);
|
|---|
| 314 |
|
|---|
| 315 | // the e+ is always created (even with Ekine=0) for further annihilation.
|
|---|
| 316 |
|
|---|
| 317 | G4double PositKineEnergy = max(0.,PositTotEnergy - electron_mass_c2);
|
|---|
| 318 |
|
|---|
| 319 | G4ThreeVector PositDirection (dxPo, dyPo, dzPo);
|
|---|
| 320 | PositDirection.rotateUz(GammaDirection);
|
|---|
| 321 |
|
|---|
| 322 | // create G4DynamicParticle object for the particle2
|
|---|
| 323 | G4DynamicParticle* aParticle2= new G4DynamicParticle(
|
|---|
| 324 | thePositron,PositDirection,PositKineEnergy);
|
|---|
| 325 |
|
|---|
| 326 | // Fill output vector
|
|---|
| 327 | fvect->push_back(aParticle1);
|
|---|
| 328 | fvect->push_back(aParticle2);
|
|---|
| 329 |
|
|---|
| 330 | // kill incident photon
|
|---|
| 331 | fParticleChange->SetProposedKineticEnergy(0.);
|
|---|
| 332 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 336 |
|
|---|
| 337 |
|
|---|