| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4GoudsmitSaundersonMscModel.cc,v 1.19 2009/11/09 18:40:25 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | // File name: G4GoudsmitSaundersonMscModel
|
|---|
| 34 | //
|
|---|
| 35 | // Author: Omrane Kadri
|
|---|
| 36 | //
|
|---|
| 37 | // Creation date: 20.02.2009
|
|---|
| 38 | //
|
|---|
| 39 | // Modifications:
|
|---|
| 40 | // 04.03.2009 V.Ivanchenko cleanup and format according to Geant4 EM style
|
|---|
| 41 | //
|
|---|
| 42 | // 15.04.2009 O.Kadri: cleanup: discard no scattering and single scattering theta
|
|---|
| 43 | // sampling from SampleCosineTheta() which means the splitting
|
|---|
| 44 | // step into two sub-steps occur only for msc regime
|
|---|
| 45 | //
|
|---|
| 46 | // 12.06.2009 O.Kadri: linear log-log extrapolation of lambda0 & lambda1 between 1 GeV - 100 TeV
|
|---|
| 47 | // adding a theta min limit due to screening effect of the atomic nucleus
|
|---|
| 48 | // 26.08.2009 O.Kadri: Cubic Spline interpolation was replaced with polynomial method
|
|---|
| 49 | // within CalculateIntegrals method
|
|---|
| 50 | // 05.10.2009 O.Kadri: tuning small angle theta distributions
|
|---|
| 51 | // assuming the case of lambdan<1 as single scattering regime
|
|---|
| 52 | // tuning theta sampling for theta below the screening angle
|
|---|
| 53 | //
|
|---|
| 54 | //
|
|---|
| 55 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 56 | //REFERENCES:
|
|---|
| 57 | //Ref.1:E. Benedito et al.,"Mixed simulation ... cross-sections", NIMB 174 (2001) pp 91-110;
|
|---|
| 58 | //Ref.2:I. Kawrakow et al.,"On the condensed ... transport",NIMB 142 (1998) pp 253-280;
|
|---|
| 59 | //Ref.3:I. Kawrakow et al.,"On the representation ... calculations",NIMB 134 (1998) pp 325-336;
|
|---|
| 60 | //Ref.4:Bielajew et al.,".....", NIMB 173 (2001) 332-343;
|
|---|
| 61 | //Ref.5:F. Salvat et al.,"ELSEPA--Dirac partial ...molecules", Comp.Phys.Comm.165 (2005) pp 157-190;
|
|---|
| 62 | //Ref.6:G4UrbanMscModel G4_v9.1Ref09;
|
|---|
| 63 | //Ref.7:G4eCoulombScatteringModel G4_v9.1Ref09.
|
|---|
| 64 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 65 |
|
|---|
| 66 | #include "G4GoudsmitSaundersonMscModel.hh"
|
|---|
| 67 | #include "G4GoudsmitSaundersonTable.hh"
|
|---|
| 68 |
|
|---|
| 69 | #include "G4ParticleChangeForMSC.hh"
|
|---|
| 70 | #include "G4MaterialCutsCouple.hh"
|
|---|
| 71 | #include "G4DynamicParticle.hh"
|
|---|
| 72 | #include "G4Electron.hh"
|
|---|
| 73 | #include "G4Positron.hh"
|
|---|
| 74 |
|
|---|
| 75 | #include "G4LossTableManager.hh"
|
|---|
| 76 | #include "G4Track.hh"
|
|---|
| 77 | #include "G4PhysicsTable.hh"
|
|---|
| 78 | #include "Randomize.hh"
|
|---|
| 79 | #include "G4Poisson.hh"
|
|---|
| 80 |
|
|---|
| 81 | using namespace std;
|
|---|
| 82 |
|
|---|
| 83 | G4double G4GoudsmitSaundersonMscModel::ener[] = {-1.};
|
|---|
| 84 | G4double G4GoudsmitSaundersonMscModel::TCSE[103][106] ;
|
|---|
| 85 | G4double G4GoudsmitSaundersonMscModel::FTCSE[103][106] ;
|
|---|
| 86 | G4double G4GoudsmitSaundersonMscModel::TCSP[103][106] ;
|
|---|
| 87 | G4double G4GoudsmitSaundersonMscModel::FTCSP[103][106] ;
|
|---|
| 88 |
|
|---|
| 89 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 90 | G4GoudsmitSaundersonMscModel::G4GoudsmitSaundersonMscModel(const G4String& nam)
|
|---|
| 91 | : G4VMscModel(nam),lowKEnergy(0.1*keV),highKEnergy(100.*TeV),isInitialized(false)
|
|---|
| 92 | {
|
|---|
| 93 | fr=0.02,rangeinit=0.,masslimite=0.6*MeV,
|
|---|
| 94 | particle=0;tausmall=1.e-16;taulim=1.e-6;tlimit=1.e10*mm;
|
|---|
| 95 | tlimitmin=10.e-6*mm;geombig=1.e50*mm;geommin=1.e-3*mm,tgeom=geombig;
|
|---|
| 96 | tlimitminfix=1.e-6*mm;stepmin=tlimitminfix;lambdalimit=1.*mm;smallstep=1.e10;
|
|---|
| 97 | theManager=G4LossTableManager::Instance();
|
|---|
| 98 | inside=false;insideskin=false;
|
|---|
| 99 | samplez=false;
|
|---|
| 100 |
|
|---|
| 101 | GSTable = new G4GoudsmitSaundersonTable();
|
|---|
| 102 |
|
|---|
| 103 | if(ener[0] < 0.0){
|
|---|
| 104 | G4cout << "### G4GoudsmitSaundersonMscModel loading ELSEPA data" << G4endl;
|
|---|
| 105 | LoadELSEPAXSections();
|
|---|
| 106 | }
|
|---|
| 107 | }
|
|---|
| 108 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 109 | G4GoudsmitSaundersonMscModel::~G4GoudsmitSaundersonMscModel()
|
|---|
| 110 | {
|
|---|
| 111 | delete GSTable;
|
|---|
| 112 | }
|
|---|
| 113 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 114 | void G4GoudsmitSaundersonMscModel::Initialise(const G4ParticleDefinition* p,
|
|---|
| 115 | const G4DataVector&)
|
|---|
| 116 | {
|
|---|
| 117 | skindepth=skin*stepmin;
|
|---|
| 118 | SetParticle(p);
|
|---|
| 119 | if(isInitialized) return;
|
|---|
| 120 | fParticleChange = GetParticleChangeForMSC();
|
|---|
| 121 | InitialiseSafetyHelper();
|
|---|
| 122 | isInitialized=true;
|
|---|
| 123 | }
|
|---|
| 124 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 125 |
|
|---|
| 126 | G4double
|
|---|
| 127 | G4GoudsmitSaundersonMscModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition* p,
|
|---|
| 128 | G4double kineticEnergy,G4double Z, G4double, G4double, G4double)
|
|---|
| 129 | {
|
|---|
| 130 | //Build cross section table : Taken from Ref.7
|
|---|
| 131 | G4double cs=0.0;
|
|---|
| 132 | G4double kinEnergy = kineticEnergy;
|
|---|
| 133 | if(kinEnergy<lowKEnergy) kinEnergy=lowKEnergy;
|
|---|
| 134 | if(kinEnergy>highKEnergy)kinEnergy=highKEnergy;
|
|---|
| 135 |
|
|---|
| 136 | G4double value0,value1;
|
|---|
| 137 | CalculateIntegrals(p,Z,kinEnergy,value0,value1);
|
|---|
| 138 |
|
|---|
| 139 | if(value1 > 0.0) cs = 1./value1;
|
|---|
| 140 |
|
|---|
| 141 | return cs;
|
|---|
| 142 | }
|
|---|
| 143 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 144 |
|
|---|
| 145 | void
|
|---|
| 146 | G4GoudsmitSaundersonMscModel::SampleScattering(const G4DynamicParticle* dynParticle,
|
|---|
| 147 | G4double safety)
|
|---|
| 148 | {
|
|---|
| 149 | G4double kineticEnergy = dynParticle->GetKineticEnergy();
|
|---|
| 150 | if((kineticEnergy <= 0.0) || (tPathLength <= tlimitminfix)) return ;
|
|---|
| 151 |
|
|---|
| 152 | G4double cosTheta1,sinTheta1,cosTheta2,sinTheta2;
|
|---|
| 153 | G4double phi1,phi2,cosPhi1=1.0,sinPhi1=0.0,cosPhi2=1.0,sinPhi2=0.0;
|
|---|
| 154 | G4double q1,Gamma,Eta,delta,nu,nu0,nu1,nu2;
|
|---|
| 155 |
|
|---|
| 156 | ///////////////////////////////////////////
|
|---|
| 157 | // Effective energy and path-length from Eq. 4.7.15+16 of Ref.4
|
|---|
| 158 | G4double eloss = theManager->GetEnergy(particle,tPathLength,currentCouple);
|
|---|
| 159 | if(eloss>0.5*kineticEnergy)eloss=kineticEnergy-eloss;//exchange possibility between target atomic e- and incident particle
|
|---|
| 160 | G4double ee = kineticEnergy - 0.5*eloss;
|
|---|
| 161 | G4double ttau = ee/electron_mass_c2;
|
|---|
| 162 | G4double ttau2 = ttau*ttau;
|
|---|
| 163 | G4double epsilonpp= eloss/ee;
|
|---|
| 164 | G4double cst1=epsilonpp*epsilonpp*(6+10*ttau+5*ttau2)/(24*ttau2+48*ttau+72);
|
|---|
| 165 |
|
|---|
| 166 | kineticEnergy *= (1 - cst1);
|
|---|
| 167 | ///////////////////////////////////////////
|
|---|
| 168 | // additivity rule for mixture and compound xsection calculation
|
|---|
| 169 | const G4Material* mat = currentCouple->GetMaterial();
|
|---|
| 170 | G4int nelm = mat->GetNumberOfElements();
|
|---|
| 171 | const G4ElementVector* theElementVector = mat->GetElementVector();
|
|---|
| 172 | const G4double* theFraction = mat->GetFractionVector();
|
|---|
| 173 | G4double atomPerVolume = mat->GetTotNbOfAtomsPerVolume();
|
|---|
| 174 | G4double llambda0=0.,llambda1=0.;
|
|---|
| 175 | for(G4int i=0;i<nelm;i++)
|
|---|
| 176 | {
|
|---|
| 177 | G4double l0,l1;
|
|---|
| 178 | CalculateIntegrals(particle,(*theElementVector)[i]->GetZ(),kineticEnergy,l0,l1);
|
|---|
| 179 | llambda0 += (theFraction[i]/l0);
|
|---|
| 180 | llambda1 += (theFraction[i]/l1);
|
|---|
| 181 | }
|
|---|
| 182 | if(llambda0>DBL_MIN) llambda0 =1./llambda0;
|
|---|
| 183 | if(llambda1>DBL_MIN) llambda1 =1./llambda1;
|
|---|
| 184 | G4double g1=0.0;
|
|---|
| 185 | if(llambda1>DBL_MIN) g1 = llambda0/llambda1;
|
|---|
| 186 |
|
|---|
| 187 | G4double x1,x0;
|
|---|
| 188 | x0=g1/2.;
|
|---|
| 189 | do
|
|---|
| 190 | {
|
|---|
| 191 | x1 = x0-(x0*((1.+x0)*log(1.+1./x0)-1.0)-g1/2.)/( (1.+2.*x0)*log(1.+1./x0)-2.0);// x1=x0-f(x0)/f'(x0)
|
|---|
| 192 | delta = std::abs( x1 - x0 );
|
|---|
| 193 | x0 = x1; // new approximation becomes the old approximation for the next iteration
|
|---|
| 194 | } while (delta > 1e-10);
|
|---|
| 195 | G4double scrA = x1;
|
|---|
| 196 |
|
|---|
| 197 | G4double us=0.0,vs=0.0,ws=1.0,x_coord=0.0,y_coord=0.0,z_coord=1.0;
|
|---|
| 198 | G4double lambdan=0.;
|
|---|
| 199 | G4bool mscatt=false,noscatt=false;
|
|---|
| 200 |
|
|---|
| 201 | if(llambda0>0.)lambdan=atomPerVolume*tPathLength/llambda0;
|
|---|
| 202 | if((lambdan<=1.0e-12))return;
|
|---|
| 203 |
|
|---|
| 204 | G4double epsilon1=G4UniformRand();
|
|---|
| 205 | G4double expn = exp(-lambdan);
|
|---|
| 206 | if((epsilon1<expn)||insideskin)// no scattering
|
|---|
| 207 | {noscatt=true;}
|
|---|
| 208 | else if((epsilon1<((1.+lambdan)*expn)||(lambdan<1.)))
|
|---|
| 209 | {
|
|---|
| 210 | mscatt=false;
|
|---|
| 211 | ws=G4UniformRand();
|
|---|
| 212 | ws= 1.-2.*scrA*ws/(1.-ws + scrA);
|
|---|
| 213 | if(acos(ws)<sqrt(scrA))//small angle approximation for theta less than screening angle
|
|---|
| 214 | {G4int i=0;
|
|---|
| 215 | do{i++;
|
|---|
| 216 | ws=1.+0.5*atomPerVolume*tPathLength*log(G4UniformRand())/llambda1;
|
|---|
| 217 | }while((fabs(ws)>1.)&&(i<20));//i<20 to avoid time consuming during the run
|
|---|
| 218 | if(i==19)ws=cos(sqrt(scrA));
|
|---|
| 219 | }
|
|---|
| 220 | G4double phi0=twopi*G4UniformRand();
|
|---|
| 221 | us=sqrt(1.-ws*ws)*cos(phi0);
|
|---|
| 222 | vs=sqrt(1.-ws*ws)*sin(phi0);
|
|---|
| 223 | G4double rr=G4UniformRand();
|
|---|
| 224 | x_coord=(rr*us);
|
|---|
| 225 | y_coord=(rr*vs);
|
|---|
| 226 | z_coord=((1.-rr)+rr*ws);
|
|---|
| 227 | }
|
|---|
| 228 | else
|
|---|
| 229 | {
|
|---|
| 230 | mscatt=true;
|
|---|
| 231 | // Ref.2 subsection 4.4 "The best solution found"
|
|---|
| 232 | // Sample first substep scattering angle
|
|---|
| 233 | SampleCosineTheta(0.5*lambdan,scrA,cosTheta1,sinTheta1);
|
|---|
| 234 | phi1 = twopi*G4UniformRand();
|
|---|
| 235 | cosPhi1 = cos(phi1);
|
|---|
| 236 | sinPhi1 = sin(phi1);
|
|---|
| 237 |
|
|---|
| 238 | // Sample second substep scattering angle
|
|---|
| 239 | SampleCosineTheta(0.5*lambdan,scrA,cosTheta2,sinTheta2);
|
|---|
| 240 | phi2 = twopi*G4UniformRand();
|
|---|
| 241 | cosPhi2 = cos(phi2);
|
|---|
| 242 | sinPhi2 = sin(phi2);
|
|---|
| 243 |
|
|---|
| 244 | // Scattering direction
|
|---|
| 245 | us = sinTheta2*(cosTheta1*cosPhi1*cosPhi2 - sinPhi1*sinPhi2) + cosTheta2*sinTheta1*cosPhi1;
|
|---|
| 246 | vs = sinTheta2*(cosTheta1*sinPhi1*cosPhi2 + cosPhi1*sinPhi2) + cosTheta2*sinTheta1*sinPhi1;
|
|---|
| 247 | ws = cosTheta1*cosTheta2 - sinTheta1*sinTheta2*cosPhi2;
|
|---|
| 248 | }
|
|---|
| 249 |
|
|---|
| 250 | G4ThreeVector oldDirection = dynParticle->GetMomentumDirection();
|
|---|
| 251 | G4ThreeVector newDirection(us,vs,ws);
|
|---|
| 252 | newDirection.rotateUz(oldDirection);
|
|---|
| 253 | fParticleChange->ProposeMomentumDirection(newDirection);
|
|---|
| 254 |
|
|---|
| 255 | if((safety > tlimitminfix)&&(latDisplasment))
|
|---|
| 256 | {
|
|---|
| 257 |
|
|---|
| 258 | if(mscatt)
|
|---|
| 259 | {
|
|---|
| 260 | if(scrA<DBL_MIN)scrA=DBL_MIN;
|
|---|
| 261 | if(llambda1<DBL_MIN)llambda1=DBL_MIN;
|
|---|
| 262 | q1 = 2.*scrA*((1. + scrA)*log(1. + 1./scrA) - 1.);
|
|---|
| 263 | if(q1<DBL_MIN)q1=DBL_MIN;
|
|---|
| 264 | Gamma = 6.*scrA*(1. + scrA)*((1. + 2.*scrA)*log(1. + 1./scrA) - 2.)/q1;
|
|---|
| 265 | Eta = atomPerVolume*tPathLength/llambda1;
|
|---|
| 266 | delta = 0.90824829 - Eta*(0.102062073-Gamma*0.026374715);
|
|---|
| 267 |
|
|---|
| 268 | nu = G4UniformRand();
|
|---|
| 269 | nu = std::sqrt(nu);
|
|---|
| 270 | nu0 = (1.0 - nu)/2.;
|
|---|
| 271 | nu1 = nu*delta;
|
|---|
| 272 | nu2 = nu*(1.0-delta);
|
|---|
| 273 | x_coord=(nu1*sinTheta1*cosPhi1+nu2*sinTheta2*(cosPhi1*cosPhi2-cosTheta1*sinPhi1*sinPhi2)+nu0*us);
|
|---|
| 274 | y_coord=(nu1*sinTheta1*sinPhi1+nu2*sinTheta2*(sinPhi1*cosPhi2+cosTheta1*cosPhi1*sinPhi2)+nu0*vs);
|
|---|
| 275 | z_coord=(nu0+nu1*cosTheta1+nu2*cosTheta2+ nu0*ws) ;
|
|---|
| 276 | }
|
|---|
| 277 |
|
|---|
| 278 | // displacement is computed relatively to the end point
|
|---|
| 279 | if(!noscatt)z_coord -= 1.0;//for noscatt zcoord z_coord !=0.
|
|---|
| 280 | G4double rr = sqrt(x_coord*x_coord+y_coord*y_coord+z_coord*z_coord);
|
|---|
| 281 | G4double r = rr*zPathLength;
|
|---|
| 282 | /*
|
|---|
| 283 | G4cout << "G4GS::SampleSecondaries: e(MeV)= " << kineticEnergy
|
|---|
| 284 | << " sinTheta= " << sqrt(1.0 - ws*ws) << " r(mm)= " << r
|
|---|
| 285 | << " trueStep(mm)= " << tPathLength
|
|---|
| 286 | << " geomStep(mm)= " << zPathLength
|
|---|
| 287 | << G4endl;
|
|---|
| 288 | */
|
|---|
| 289 | if(r > tlimitminfix) {
|
|---|
| 290 |
|
|---|
| 291 | G4ThreeVector latDirection(x_coord/rr,y_coord/rr,z_coord/rr);
|
|---|
| 292 | latDirection.rotateUz(oldDirection);
|
|---|
| 293 |
|
|---|
| 294 | ComputeDisplacement(fParticleChange, latDirection, r, safety);
|
|---|
| 295 | }
|
|---|
| 296 | }
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| 299 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 300 |
|
|---|
| 301 | void
|
|---|
| 302 | G4GoudsmitSaundersonMscModel::SampleCosineTheta(G4double lambdan, G4double scrA,
|
|---|
| 303 | G4double &cost, G4double &sint)
|
|---|
| 304 | {
|
|---|
| 305 | G4double u,Qn1,r1,tet;
|
|---|
| 306 | G4double xi=0.;
|
|---|
| 307 | Qn1=2.* lambdan *scrA*((1.+scrA)*log(1.+1./scrA)-1.);
|
|---|
| 308 |
|
|---|
| 309 | if (Qn1<0.001)xi=-0.5*Qn1*log(G4UniformRand());
|
|---|
| 310 | else if(Qn1>0.5)xi=2.*G4UniformRand();//isotropic distribution
|
|---|
| 311 | else
|
|---|
| 312 | {
|
|---|
| 313 | // procedure described by Benedito in Ref.1
|
|---|
| 314 | do{
|
|---|
| 315 | r1=G4UniformRand();
|
|---|
| 316 | u=GSTable->SampleTheta(lambdan,scrA,G4UniformRand());
|
|---|
| 317 | xi = 2.*u;
|
|---|
| 318 | tet=acos(1.-xi);
|
|---|
| 319 | }while(tet*r1*r1>sin(tet));
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 | if(xi<0.)xi=0.;
|
|---|
| 323 | if(xi>2.)xi=2.;
|
|---|
| 324 | cost=(1. - xi);
|
|---|
| 325 | sint=sqrt(xi*(2.-xi));
|
|---|
| 326 |
|
|---|
| 327 | }
|
|---|
| 328 |
|
|---|
| 329 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 330 | // Polynomial log-log interpolation of Lambda0 and Lambda1 between 100 eV - 1 GeV
|
|---|
| 331 | // linear log-log extrapolation between 1 GeV - 100 TeV
|
|---|
| 332 |
|
|---|
| 333 | void
|
|---|
| 334 | G4GoudsmitSaundersonMscModel::CalculateIntegrals(const G4ParticleDefinition* p,G4double Z,
|
|---|
| 335 | G4double kinEnergy,G4double &Lam0,
|
|---|
| 336 | G4double &Lam1)
|
|---|
| 337 | {
|
|---|
| 338 | G4double summ00=0.0;
|
|---|
| 339 | G4double summ10=0.0;
|
|---|
| 340 | G4double x1,x2,y1,y2,acoeff,bcoeff;
|
|---|
| 341 | G4double kineticE = kinEnergy;
|
|---|
| 342 | if(kineticE<lowKEnergy)kineticE=lowKEnergy;
|
|---|
| 343 | if(kineticE>highKEnergy)kineticE=highKEnergy;
|
|---|
| 344 | kineticE /= eV;
|
|---|
| 345 | G4double logE=log(kineticE);
|
|---|
| 346 |
|
|---|
| 347 | G4int iZ = G4int(Z);
|
|---|
| 348 | if(iZ > 103) iZ = 103;
|
|---|
| 349 |
|
|---|
| 350 | G4int enerInd=0;
|
|---|
| 351 | for(G4int i=1;i<106;i++)
|
|---|
| 352 | {
|
|---|
| 353 | if((logE>=ener[i])&&(logE<ener[i+1])){enerInd=i;break;}
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | if(p==G4Electron::Electron())
|
|---|
| 357 | {
|
|---|
| 358 | if(kineticE<=1.0e+9)//Interpolation of the form y=ax²+b
|
|---|
| 359 | {
|
|---|
| 360 | x1=ener[enerInd];
|
|---|
| 361 | x2=ener[enerInd+1];
|
|---|
| 362 | y1=TCSE[iZ-1][enerInd];
|
|---|
| 363 | y2=TCSE[iZ-1][enerInd+1];
|
|---|
| 364 | acoeff=(y2-y1)/(x2*x2-x1*x1);
|
|---|
| 365 | bcoeff=y2-acoeff*x2*x2;
|
|---|
| 366 | summ00=acoeff*logE*logE+bcoeff;
|
|---|
| 367 | summ00 =exp(summ00);
|
|---|
| 368 | y1=FTCSE[iZ-1][enerInd];
|
|---|
| 369 | y2=FTCSE[iZ-1][enerInd+1];
|
|---|
| 370 | acoeff=(y2-y1)/(x2*x2-x1*x1);
|
|---|
| 371 | bcoeff=y2-acoeff*x2*x2;
|
|---|
| 372 | summ10=acoeff*logE*logE+bcoeff;
|
|---|
| 373 | summ10 =exp(summ10);
|
|---|
| 374 | }
|
|---|
| 375 | else //Interpolation of the form y=ax+b
|
|---|
| 376 | {
|
|---|
| 377 | x1=ener[104];
|
|---|
| 378 | x2=ener[105];
|
|---|
| 379 | y1=TCSE[iZ-1][104];
|
|---|
| 380 | y2=TCSE[iZ-1][105];
|
|---|
| 381 | summ00=(y2-y1)*(logE-x1)/(x2-x1)+y1;
|
|---|
| 382 | summ00 =exp(summ00);
|
|---|
| 383 | y1=FTCSE[iZ-1][104];
|
|---|
| 384 | y2=FTCSE[iZ-1][105];
|
|---|
| 385 | summ10=(y2-y1)*(logE-x1)/(x2-x1)+y1;
|
|---|
| 386 | summ10 =exp(summ10);
|
|---|
| 387 | }
|
|---|
| 388 | }
|
|---|
| 389 | if(p==G4Positron::Positron())
|
|---|
| 390 | {
|
|---|
| 391 | if(kinEnergy<=1.0e+9)
|
|---|
| 392 | {
|
|---|
| 393 | x1=ener[enerInd];
|
|---|
| 394 | x2=ener[enerInd+1];
|
|---|
| 395 | y1=TCSP[iZ-1][enerInd];
|
|---|
| 396 | y2=TCSP[iZ-1][enerInd+1];
|
|---|
| 397 | acoeff=(y2-y1)/(x2*x2-x1*x1);
|
|---|
| 398 | bcoeff=y2-acoeff*x2*x2;
|
|---|
| 399 | summ00=acoeff*logE*logE+bcoeff;
|
|---|
| 400 | summ00 =exp(summ00);
|
|---|
| 401 | y1=FTCSP[iZ-1][enerInd];
|
|---|
| 402 | y2=FTCSP[iZ-1][enerInd+1];
|
|---|
| 403 | acoeff=(y2-y1)/(x2*x2-x1*x1);
|
|---|
| 404 | bcoeff=y2-acoeff*x2*x2;
|
|---|
| 405 | summ10=acoeff*logE*logE+bcoeff;
|
|---|
| 406 | summ10 =exp(summ10);
|
|---|
| 407 | }
|
|---|
| 408 | else
|
|---|
| 409 | {
|
|---|
| 410 | x1=ener[104];
|
|---|
| 411 | x2=ener[105];
|
|---|
| 412 | y1=TCSP[iZ-1][104];
|
|---|
| 413 | y2=TCSP[iZ-1][105];
|
|---|
| 414 | summ00=(y2-y1)*(logE-x1)/(x2-x1)+y1;
|
|---|
| 415 | summ00 =exp(summ00);
|
|---|
| 416 | y1=FTCSP[iZ-1][104];
|
|---|
| 417 | y2=FTCSP[iZ-1][105];
|
|---|
| 418 | summ10=(y2-y1)*(logE-x1)/(x2-x1)+y1;
|
|---|
| 419 | summ10 =exp(summ10);
|
|---|
| 420 | }
|
|---|
| 421 | }
|
|---|
| 422 |
|
|---|
| 423 | summ00 *=barn;
|
|---|
| 424 | summ10 *=barn;
|
|---|
| 425 |
|
|---|
| 426 | Lam0=1./((1.+1./Z)*summ00);
|
|---|
| 427 | Lam1=1./((1.+1./Z)*summ10);
|
|---|
| 428 |
|
|---|
| 429 | }
|
|---|
| 430 |
|
|---|
| 431 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 432 | //t->g->t step transformations taken from Ref.6
|
|---|
| 433 |
|
|---|
| 434 | G4double
|
|---|
| 435 | G4GoudsmitSaundersonMscModel::ComputeTruePathLengthLimit(const G4Track& track,
|
|---|
| 436 | G4PhysicsTable* theTable,
|
|---|
| 437 | G4double currentMinimalStep)
|
|---|
| 438 | {
|
|---|
| 439 | tPathLength = currentMinimalStep;
|
|---|
| 440 | G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
|
|---|
| 441 | G4StepStatus stepStatus = sp->GetStepStatus();
|
|---|
| 442 |
|
|---|
| 443 | const G4DynamicParticle* dp = track.GetDynamicParticle();
|
|---|
| 444 |
|
|---|
| 445 | if(stepStatus == fUndefined) {
|
|---|
| 446 | inside = false;
|
|---|
| 447 | insideskin = false;
|
|---|
| 448 | tlimit = geombig;
|
|---|
| 449 | SetParticle( dp->GetDefinition() );
|
|---|
| 450 | }
|
|---|
| 451 |
|
|---|
| 452 | theLambdaTable = theTable;
|
|---|
| 453 | currentCouple = track.GetMaterialCutsCouple();
|
|---|
| 454 | currentMaterialIndex = currentCouple->GetIndex();
|
|---|
| 455 | currentKinEnergy = dp->GetKineticEnergy();
|
|---|
| 456 | currentRange =
|
|---|
| 457 | theManager->GetRangeFromRestricteDEDX(particle,currentKinEnergy,currentCouple);
|
|---|
| 458 |
|
|---|
| 459 | lambda1 = GetLambda(currentKinEnergy);
|
|---|
| 460 |
|
|---|
| 461 | // stop here if small range particle
|
|---|
| 462 | if(inside) return tPathLength;
|
|---|
| 463 |
|
|---|
| 464 | if(tPathLength > currentRange) tPathLength = currentRange;
|
|---|
| 465 |
|
|---|
| 466 | G4double presafety = sp->GetSafety();
|
|---|
| 467 |
|
|---|
| 468 | //G4cout << "G4GS::StepLimit tPathLength= "
|
|---|
| 469 | // <<tPathLength<<" safety= " << presafety
|
|---|
| 470 | // << " range= " <<currentRange<< " lambda= "<<lambda1
|
|---|
| 471 | // << " Alg: " << steppingAlgorithm <<G4endl;
|
|---|
| 472 |
|
|---|
| 473 | // far from geometry boundary
|
|---|
| 474 | if(currentRange < presafety)
|
|---|
| 475 | {
|
|---|
| 476 | inside = true;
|
|---|
| 477 | return tPathLength;
|
|---|
| 478 | }
|
|---|
| 479 |
|
|---|
| 480 | // standard version
|
|---|
| 481 | //
|
|---|
| 482 | if (steppingAlgorithm == fUseDistanceToBoundary)
|
|---|
| 483 | {
|
|---|
| 484 | //compute geomlimit and presafety
|
|---|
| 485 | G4double geomlimit = ComputeGeomLimit(track, presafety, tPathLength);
|
|---|
| 486 |
|
|---|
| 487 | // is far from boundary
|
|---|
| 488 | if(currentRange <= presafety)
|
|---|
| 489 | {
|
|---|
| 490 | inside = true;
|
|---|
| 491 | return tPathLength;
|
|---|
| 492 | }
|
|---|
| 493 |
|
|---|
| 494 | smallstep += 1.;
|
|---|
| 495 | insideskin = false;
|
|---|
| 496 |
|
|---|
| 497 | if((stepStatus == fGeomBoundary) || (stepStatus == fUndefined))
|
|---|
| 498 | {
|
|---|
| 499 | rangeinit = currentRange;
|
|---|
| 500 | if(stepStatus == fUndefined) smallstep = 1.e10;
|
|---|
| 501 | else smallstep = 1.;
|
|---|
| 502 |
|
|---|
| 503 | //define stepmin here (it depends on lambda!)
|
|---|
| 504 | //rough estimation of lambda_elastic/lambda_transport
|
|---|
| 505 | G4double rat = currentKinEnergy/MeV ;
|
|---|
| 506 | rat = 1.e-3/(rat*(10.+rat)) ;
|
|---|
| 507 | //stepmin ~ lambda_elastic
|
|---|
| 508 | stepmin = rat*lambda1;
|
|---|
| 509 | skindepth = skin*stepmin;
|
|---|
| 510 | //define tlimitmin
|
|---|
| 511 | tlimitmin = 10.*stepmin;
|
|---|
| 512 | if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
|
|---|
| 513 |
|
|---|
| 514 | //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
|
|---|
| 515 | // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl;
|
|---|
| 516 | // constraint from the geometry
|
|---|
| 517 | if((geomlimit < geombig) && (geomlimit > geommin))
|
|---|
| 518 | {
|
|---|
| 519 | if(stepStatus == fGeomBoundary)
|
|---|
| 520 | tgeom = geomlimit/facgeom;
|
|---|
| 521 | else
|
|---|
| 522 | tgeom = 2.*geomlimit/facgeom;
|
|---|
| 523 | }
|
|---|
| 524 | else
|
|---|
| 525 | tgeom = geombig;
|
|---|
| 526 |
|
|---|
| 527 | }
|
|---|
| 528 |
|
|---|
| 529 | //step limit
|
|---|
| 530 | tlimit = facrange*rangeinit;
|
|---|
| 531 | if(tlimit < facsafety*presafety)
|
|---|
| 532 | tlimit = facsafety*presafety;
|
|---|
| 533 |
|
|---|
| 534 | //lower limit for tlimit
|
|---|
| 535 | if(tlimit < tlimitmin) tlimit = tlimitmin;
|
|---|
| 536 |
|
|---|
| 537 | if(tlimit > tgeom) tlimit = tgeom;
|
|---|
| 538 |
|
|---|
| 539 | //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
|
|---|
| 540 | // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
|
|---|
| 541 |
|
|---|
| 542 | // shortcut
|
|---|
| 543 | if((tPathLength < tlimit) && (tPathLength < presafety) &&
|
|---|
| 544 | (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth))
|
|---|
| 545 | return tPathLength;
|
|---|
| 546 |
|
|---|
| 547 | // step reduction near to boundary
|
|---|
| 548 | if(smallstep < skin)
|
|---|
| 549 | {
|
|---|
| 550 | tlimit = stepmin;
|
|---|
| 551 | insideskin = true;
|
|---|
| 552 | }
|
|---|
| 553 | else if(geomlimit < geombig)
|
|---|
| 554 | {
|
|---|
| 555 | if(geomlimit > skindepth)
|
|---|
| 556 | {
|
|---|
| 557 | if(tlimit > geomlimit-0.999*skindepth)
|
|---|
| 558 | tlimit = geomlimit-0.999*skindepth;
|
|---|
| 559 | }
|
|---|
| 560 | else
|
|---|
| 561 | {
|
|---|
| 562 | insideskin = true;
|
|---|
| 563 | if(tlimit > stepmin) tlimit = stepmin;
|
|---|
| 564 | }
|
|---|
| 565 | }
|
|---|
| 566 |
|
|---|
| 567 | if(tlimit < stepmin) tlimit = stepmin;
|
|---|
| 568 |
|
|---|
| 569 | if(tPathLength > tlimit) tPathLength = tlimit;
|
|---|
| 570 |
|
|---|
| 571 | }
|
|---|
| 572 | // for 'normal' simulation with or without magnetic field
|
|---|
| 573 | // there no small step/single scattering at boundaries
|
|---|
| 574 | else if(steppingAlgorithm == fUseSafety)
|
|---|
| 575 | {
|
|---|
| 576 | // compute presafety again if presafety <= 0 and no boundary
|
|---|
| 577 | // i.e. when it is needed for optimization purposes
|
|---|
| 578 | if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix))
|
|---|
| 579 | presafety = ComputeSafety(sp->GetPosition(),tPathLength);
|
|---|
| 580 |
|
|---|
| 581 | // is far from boundary
|
|---|
| 582 | if(currentRange < presafety)
|
|---|
| 583 | {
|
|---|
| 584 | inside = true;
|
|---|
| 585 | return tPathLength;
|
|---|
| 586 | }
|
|---|
| 587 |
|
|---|
| 588 | if((stepStatus == fGeomBoundary) || (stepStatus == fUndefined))
|
|---|
| 589 | {
|
|---|
| 590 | rangeinit = currentRange;
|
|---|
| 591 | fr = facrange;
|
|---|
| 592 | // 9.1 like stepping for e+/e- only (not for muons,hadrons)
|
|---|
| 593 | if(mass < masslimite)
|
|---|
| 594 | {
|
|---|
| 595 | if(lambda1 > currentRange)
|
|---|
| 596 | rangeinit = lambda1;
|
|---|
| 597 | if(lambda1 > lambdalimit)
|
|---|
| 598 | fr *= 0.75+0.25*lambda1/lambdalimit;
|
|---|
| 599 | }
|
|---|
| 600 |
|
|---|
| 601 | //lower limit for tlimit
|
|---|
| 602 | G4double rat = currentKinEnergy/MeV ;
|
|---|
| 603 | rat = 1.e-3/(rat*(10.+rat)) ;
|
|---|
| 604 | tlimitmin = 10.*lambda1*rat;
|
|---|
| 605 | if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
|
|---|
| 606 | }
|
|---|
| 607 | //step limit
|
|---|
| 608 | tlimit = fr*rangeinit;
|
|---|
| 609 |
|
|---|
| 610 | if(tlimit < facsafety*presafety)
|
|---|
| 611 | tlimit = facsafety*presafety;
|
|---|
| 612 |
|
|---|
| 613 | //lower limit for tlimit
|
|---|
| 614 | if(tlimit < tlimitmin) tlimit = tlimitmin;
|
|---|
| 615 |
|
|---|
| 616 | if(tPathLength > tlimit) tPathLength = tlimit;
|
|---|
| 617 | }
|
|---|
| 618 |
|
|---|
| 619 | // version similar to 7.1 (needed for some experiments)
|
|---|
| 620 | else
|
|---|
| 621 | {
|
|---|
| 622 | if (stepStatus == fGeomBoundary)
|
|---|
| 623 | {
|
|---|
| 624 | if (currentRange > lambda1) tlimit = facrange*currentRange;
|
|---|
| 625 | else tlimit = facrange*lambda1;
|
|---|
| 626 |
|
|---|
| 627 | if(tlimit < tlimitmin) tlimit = tlimitmin;
|
|---|
| 628 | if(tPathLength > tlimit) tPathLength = tlimit;
|
|---|
| 629 | }
|
|---|
| 630 | }
|
|---|
| 631 | //G4cout << "tPathLength= " << tPathLength
|
|---|
| 632 | // << " currentMinimalStep= " << currentMinimalStep << G4endl;
|
|---|
| 633 | return tPathLength ;
|
|---|
| 634 | }
|
|---|
| 635 |
|
|---|
| 636 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 637 |
|
|---|
| 638 | G4double G4GoudsmitSaundersonMscModel::ComputeGeomPathLength(G4double)
|
|---|
| 639 | {
|
|---|
| 640 | par1 = -1. ;
|
|---|
| 641 | par2 = par3 = 0. ;
|
|---|
| 642 |
|
|---|
| 643 | // do the true -> geom transformation
|
|---|
| 644 | zPathLength = tPathLength;
|
|---|
| 645 |
|
|---|
| 646 | // z = t for very small tPathLength
|
|---|
| 647 | if(tPathLength < tlimitminfix) return zPathLength;
|
|---|
| 648 |
|
|---|
| 649 | // this correction needed to run MSC with eIoni and eBrem inactivated
|
|---|
| 650 | // and makes no harm for a normal run
|
|---|
| 651 | if(tPathLength > currentRange)
|
|---|
| 652 | tPathLength = currentRange ;
|
|---|
| 653 |
|
|---|
| 654 | G4double tau = tPathLength/lambda1 ;
|
|---|
| 655 |
|
|---|
| 656 | if ((tau <= tausmall) || insideskin) {
|
|---|
| 657 | zPathLength = tPathLength;
|
|---|
| 658 | if(zPathLength > lambda1) zPathLength = lambda1;
|
|---|
| 659 | return zPathLength;
|
|---|
| 660 | }
|
|---|
| 661 |
|
|---|
| 662 | G4double zmean = tPathLength;
|
|---|
| 663 | if (tPathLength < currentRange*dtrl) {
|
|---|
| 664 | if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
|
|---|
| 665 | else zmean = lambda1*(1.-exp(-tau));
|
|---|
| 666 | } else if(currentKinEnergy < mass) {
|
|---|
| 667 | par1 = 1./currentRange ;
|
|---|
| 668 | par2 = 1./(par1*lambda1) ;
|
|---|
| 669 | par3 = 1.+par2 ;
|
|---|
| 670 | if(tPathLength < currentRange)
|
|---|
| 671 | zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ;
|
|---|
| 672 | else
|
|---|
| 673 | zmean = 1./(par1*par3) ;
|
|---|
| 674 | } else {
|
|---|
| 675 | G4double T1 = theManager->GetEnergy(particle,currentRange-tPathLength,
|
|---|
| 676 | currentCouple);
|
|---|
| 677 |
|
|---|
| 678 | lambda11 = GetLambda(T1);
|
|---|
| 679 |
|
|---|
| 680 | par1 = (lambda1-lambda11)/(lambda1*tPathLength) ;
|
|---|
| 681 | par2 = 1./(par1*lambda1) ;
|
|---|
| 682 | par3 = 1.+par2 ;
|
|---|
| 683 | zmean = (1.-exp(par3*log(lambda11/lambda1)))/(par1*par3) ;
|
|---|
| 684 | }
|
|---|
| 685 |
|
|---|
| 686 | zPathLength = zmean ;
|
|---|
| 687 | // sample z
|
|---|
| 688 | if(samplez) {
|
|---|
| 689 |
|
|---|
| 690 | const G4double ztmax = 0.99, onethird = 1./3. ;
|
|---|
| 691 | G4double zt = zmean/tPathLength ;
|
|---|
| 692 |
|
|---|
| 693 | if (tPathLength > stepmin && zt < ztmax) {
|
|---|
| 694 |
|
|---|
| 695 | G4double u,cz1;
|
|---|
| 696 | if(zt >= onethird) {
|
|---|
| 697 |
|
|---|
| 698 | G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
|
|---|
| 699 | cz1 = 1.+cz ;
|
|---|
| 700 | G4double u0 = cz/cz1 ;
|
|---|
| 701 | G4double grej ;
|
|---|
| 702 | do {
|
|---|
| 703 | u = exp(log(G4UniformRand())/cz1) ;
|
|---|
| 704 | grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ;
|
|---|
| 705 | } while (grej < G4UniformRand()) ;
|
|---|
| 706 |
|
|---|
| 707 | } else {
|
|---|
| 708 | cz1 = 1./zt-1.;
|
|---|
| 709 | u = 1.-exp(log(G4UniformRand())/cz1) ;
|
|---|
| 710 | }
|
|---|
| 711 | zPathLength = tPathLength*u ;
|
|---|
| 712 | }
|
|---|
| 713 | }
|
|---|
| 714 | if(zPathLength > lambda1) zPathLength = lambda1;
|
|---|
| 715 | //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda1 << G4endl;
|
|---|
| 716 |
|
|---|
| 717 | return zPathLength;
|
|---|
| 718 | }
|
|---|
| 719 |
|
|---|
| 720 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 721 |
|
|---|
| 722 | G4double
|
|---|
| 723 | G4GoudsmitSaundersonMscModel::ComputeTrueStepLength(G4double geomStepLength)
|
|---|
| 724 | {
|
|---|
| 725 | // step defined other than transportation
|
|---|
| 726 | if(geomStepLength == zPathLength && tPathLength <= currentRange)
|
|---|
| 727 | return tPathLength;
|
|---|
| 728 |
|
|---|
| 729 | // t = z for very small step
|
|---|
| 730 | zPathLength = geomStepLength;
|
|---|
| 731 | tPathLength = geomStepLength;
|
|---|
| 732 | if(geomStepLength < tlimitminfix) return tPathLength;
|
|---|
| 733 |
|
|---|
| 734 | // recalculation
|
|---|
| 735 | if((geomStepLength > lambda1*tausmall) && !insideskin)
|
|---|
| 736 | {
|
|---|
| 737 | if(par1 < 0.)
|
|---|
| 738 | tPathLength = -lambda1*log(1.-geomStepLength/lambda1) ;
|
|---|
| 739 | else
|
|---|
| 740 | {
|
|---|
| 741 | if(par1*par3*geomStepLength < 1.)
|
|---|
| 742 | tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ;
|
|---|
| 743 | else
|
|---|
| 744 | tPathLength = currentRange;
|
|---|
| 745 | }
|
|---|
| 746 | }
|
|---|
| 747 | if(tPathLength < geomStepLength) tPathLength = geomStepLength;
|
|---|
| 748 | //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl;
|
|---|
| 749 |
|
|---|
| 750 | return tPathLength;
|
|---|
| 751 | }
|
|---|
| 752 |
|
|---|
| 753 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 754 | //Total & first transport x sections for e-/e+ generated from ELSEPA code
|
|---|
| 755 |
|
|---|
| 756 | void G4GoudsmitSaundersonMscModel::LoadELSEPAXSections()
|
|---|
| 757 | {
|
|---|
| 758 | G4String filename = "XSECTIONS.dat";
|
|---|
| 759 |
|
|---|
| 760 | char* path = getenv("G4LEDATA");
|
|---|
| 761 | if (!path)
|
|---|
| 762 | {
|
|---|
| 763 | G4String excep = "G4GoudsmitSaundersonTable: G4LEDATA environment variable not set properly";
|
|---|
| 764 | G4Exception(excep);
|
|---|
| 765 | }
|
|---|
| 766 |
|
|---|
| 767 | G4String pathString(path);
|
|---|
| 768 | G4String dirFile = pathString + "/msc_GS/" + filename;
|
|---|
| 769 | FILE *infile;
|
|---|
| 770 | infile = fopen(dirFile,"r");
|
|---|
| 771 | if (infile == 0)
|
|---|
| 772 | {
|
|---|
| 773 | G4String excep = "G4GoudsmitSaunderson - data files: " + dirFile + " not found";
|
|---|
| 774 | G4Exception(excep);
|
|---|
| 775 | }
|
|---|
| 776 |
|
|---|
| 777 | // Read parameters from tables and take logarithms
|
|---|
| 778 | G4float aRead;
|
|---|
| 779 | for(G4int i=0 ; i<106 ;i++){
|
|---|
| 780 | fscanf(infile,"%f\t",&aRead);
|
|---|
| 781 | if(aRead > 0.0) aRead = log(aRead);
|
|---|
| 782 | else aRead = 0.0;
|
|---|
| 783 | ener[i]=aRead;
|
|---|
| 784 | }
|
|---|
| 785 | for(G4int j=0;j<103;j++){
|
|---|
| 786 | for(G4int i=0;i<106;i++){
|
|---|
| 787 | fscanf(infile,"%f\t",&aRead);
|
|---|
| 788 | if(aRead > 0.0) aRead = log(aRead);
|
|---|
| 789 | else aRead = 0.0;
|
|---|
| 790 | TCSE[j][i]=aRead;
|
|---|
| 791 | }
|
|---|
| 792 | }
|
|---|
| 793 | for(G4int j=0;j<103;j++){
|
|---|
| 794 | for(G4int i=0;i<106;i++){
|
|---|
| 795 | fscanf(infile,"%f\t",&aRead);
|
|---|
| 796 | if(aRead > 0.0) aRead = log(aRead);
|
|---|
| 797 | else aRead = 0.0;
|
|---|
| 798 | FTCSE[j][i]=aRead;
|
|---|
| 799 | }
|
|---|
| 800 | }
|
|---|
| 801 | for(G4int j=0;j<103;j++){
|
|---|
| 802 | for(G4int i=0;i<106;i++){
|
|---|
| 803 | fscanf(infile,"%f\t",&aRead);
|
|---|
| 804 | if(aRead > 0.0) aRead = log(aRead);
|
|---|
| 805 | else aRead = 0.0;
|
|---|
| 806 | TCSP[j][i]=aRead;
|
|---|
| 807 | }
|
|---|
| 808 | }
|
|---|
| 809 | for(G4int j=0;j<103;j++){
|
|---|
| 810 | for(G4int i=0;i<106;i++){
|
|---|
| 811 | fscanf(infile,"%f\t",&aRead);
|
|---|
| 812 | if(aRead > 0.0) aRead = log(aRead);
|
|---|
| 813 | else aRead = 0.0;
|
|---|
| 814 | FTCSP[j][i]=aRead;
|
|---|
| 815 | }
|
|---|
| 816 | }
|
|---|
| 817 |
|
|---|
| 818 | fclose(infile);
|
|---|
| 819 |
|
|---|
| 820 | }
|
|---|
| 821 |
|
|---|
| 822 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|