| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4HeatedKleinNishinaCompton.cc,v 1.5 2009/04/12 17:09:57 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4HeatedKleinNishinaCompton
|
|---|
| 35 | //
|
|---|
| 36 | // Author: Vladimir Grichine on base of M. Maire and V. Ivanchenko code
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 15.03.2009
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| 41 | //
|
|---|
| 42 | //
|
|---|
| 43 | // Class Description:
|
|---|
| 44 | //
|
|---|
| 45 | // -------------------------------------------------------------------
|
|---|
| 46 | //
|
|---|
| 47 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 48 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 49 |
|
|---|
| 50 | #include <CLHEP/Random/RandGamma.h>
|
|---|
| 51 | #include "globals.hh"
|
|---|
| 52 | #include "G4RandomDirection.hh"
|
|---|
| 53 | #include "Randomize.hh"
|
|---|
| 54 |
|
|---|
| 55 | #include "G4HeatedKleinNishinaCompton.hh"
|
|---|
| 56 | #include "G4Electron.hh"
|
|---|
| 57 | #include "G4Gamma.hh"
|
|---|
| 58 | #include "Randomize.hh"
|
|---|
| 59 | #include "G4DataVector.hh"
|
|---|
| 60 | #include "G4ParticleChangeForGamma.hh"
|
|---|
| 61 |
|
|---|
| 62 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 63 |
|
|---|
| 64 | using namespace std;
|
|---|
| 65 |
|
|---|
| 66 | G4HeatedKleinNishinaCompton::G4HeatedKleinNishinaCompton(const G4ParticleDefinition*,
|
|---|
| 67 | const G4String& nam)
|
|---|
| 68 | : G4VEmModel(nam)
|
|---|
| 69 | {
|
|---|
| 70 | theGamma = G4Gamma::Gamma();
|
|---|
| 71 | theElectron = G4Electron::Electron();
|
|---|
| 72 | lowestGammaEnergy = 1.0*eV;
|
|---|
| 73 | fTemperature = 1.0*keV;
|
|---|
| 74 | fParticleChange = 0;
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 78 |
|
|---|
| 79 | G4HeatedKleinNishinaCompton::~G4HeatedKleinNishinaCompton()
|
|---|
| 80 | {}
|
|---|
| 81 |
|
|---|
| 82 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 83 |
|
|---|
| 84 | void G4HeatedKleinNishinaCompton::Initialise(const G4ParticleDefinition*,
|
|---|
| 85 | const G4DataVector&)
|
|---|
| 86 | {
|
|---|
| 87 | if(!fParticleChange) fParticleChange = GetParticleChangeForGamma();
|
|---|
| 88 | }
|
|---|
| 89 |
|
|---|
| 90 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 91 | //
|
|---|
| 92 | //
|
|---|
| 93 |
|
|---|
| 94 | G4double G4HeatedKleinNishinaCompton::ComputeCrossSectionPerAtom(
|
|---|
| 95 | const G4ParticleDefinition*,
|
|---|
| 96 | G4double GammaEnergy,
|
|---|
| 97 | G4double Z, G4double,
|
|---|
| 98 | G4double, G4double)
|
|---|
| 99 | {
|
|---|
| 100 | G4double CrossSection = 0.0 ;
|
|---|
| 101 | if ( Z < 0.9999 ) return CrossSection;
|
|---|
| 102 | if ( GammaEnergy < 0.01*keV ) return CrossSection;
|
|---|
| 103 | // if ( GammaEnergy > (100.*GeV/Z) ) return CrossSection;
|
|---|
| 104 |
|
|---|
| 105 | static const G4double a = 20.0 , b = 230.0 , c = 440.0;
|
|---|
| 106 |
|
|---|
| 107 | static const G4double
|
|---|
| 108 | d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527 *barn, d4=-1.9798e+1*barn,
|
|---|
| 109 | e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
|
|---|
| 110 | f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;
|
|---|
| 111 |
|
|---|
| 112 | G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
|
|---|
| 113 | p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
|
|---|
| 114 |
|
|---|
| 115 | G4double T0 = 15.0*keV;
|
|---|
| 116 | if (Z < 1.5) T0 = 40.0*keV;
|
|---|
| 117 |
|
|---|
| 118 | G4double X = max(GammaEnergy, T0) / electron_mass_c2;
|
|---|
| 119 | CrossSection = p1Z*std::log(1.+2.*X)/X
|
|---|
| 120 | + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
|
|---|
| 121 |
|
|---|
| 122 | // modification for low energy. (special case for Hydrogen)
|
|---|
| 123 | if (GammaEnergy < T0) {
|
|---|
| 124 | G4double dT0 = 1.*keV;
|
|---|
| 125 | X = (T0+dT0) / electron_mass_c2 ;
|
|---|
| 126 | G4double sigma = p1Z*log(1.+2*X)/X
|
|---|
| 127 | + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
|
|---|
| 128 | G4double c1 = -T0*(sigma-CrossSection)/(CrossSection*dT0);
|
|---|
| 129 | G4double c2 = 0.150;
|
|---|
| 130 | if (Z > 1.5) c2 = 0.375-0.0556*log(Z);
|
|---|
| 131 | G4double y = log(GammaEnergy/T0);
|
|---|
| 132 | CrossSection *= exp(-y*(c1+c2*y));
|
|---|
| 133 | }
|
|---|
| 134 | // G4cout << "e= " << GammaEnergy << " Z= " << Z << " cross= " << CrossSection << G4endl;
|
|---|
| 135 | return CrossSection;
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 139 | //
|
|---|
| 140 | //
|
|---|
| 141 |
|
|---|
| 142 | void G4HeatedKleinNishinaCompton::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
|
|---|
| 143 | const G4MaterialCutsCouple*,
|
|---|
| 144 | const G4DynamicParticle* aDynamicGamma,
|
|---|
| 145 | G4double,
|
|---|
| 146 | G4double)
|
|---|
| 147 | {
|
|---|
| 148 | // The scattered gamma energy is sampled according to Klein - Nishina formula.
|
|---|
| 149 | // The random number techniques of Butcher & Messel are used
|
|---|
| 150 | // (Nuc Phys 20(1960),15).
|
|---|
| 151 | // Note : Effects due to binding of atomic electrons are negliged.
|
|---|
| 152 |
|
|---|
| 153 | // We start to prepare a heated electron from Maxwell distribution.
|
|---|
| 154 | // Then we try to boost to the electron rest frame and make scattering.
|
|---|
| 155 | // The final step is to recover new gamma 4momentum in the lab frame
|
|---|
| 156 |
|
|---|
| 157 | G4double eMomentumC2 = CLHEP::RandGamma::shoot(1.5,1.);
|
|---|
| 158 | eMomentumC2 *= 2*electron_mass_c2*fTemperature; // electron (pc)^2
|
|---|
| 159 | G4ThreeVector eMomDir = G4RandomDirection();
|
|---|
| 160 | eMomDir *= std::sqrt(eMomentumC2);
|
|---|
| 161 | G4double eEnergy = std::sqrt(eMomentumC2+electron_mass_c2*electron_mass_c2);
|
|---|
| 162 | G4LorentzVector electron4v = G4LorentzVector(eMomDir,eEnergy);
|
|---|
| 163 | G4ThreeVector bst = electron4v.boostVector();
|
|---|
| 164 |
|
|---|
| 165 | G4LorentzVector gamma4v = aDynamicGamma->Get4Momentum();
|
|---|
| 166 | gamma4v.boost(-bst);
|
|---|
| 167 |
|
|---|
| 168 | G4ThreeVector gammaMomV = gamma4v.vect();
|
|---|
| 169 | G4double gamEnergy0 = gammaMomV.mag();
|
|---|
| 170 |
|
|---|
| 171 |
|
|---|
| 172 | // G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
|
|---|
| 173 | G4double E0_m = gamEnergy0 / electron_mass_c2 ;
|
|---|
| 174 |
|
|---|
| 175 | // G4ThreeVector gamDirection0 = /aDynamicGamma->GetMomentumDirection();
|
|---|
| 176 |
|
|---|
| 177 | G4ThreeVector gamDirection0 = gammaMomV/gamEnergy0;
|
|---|
| 178 |
|
|---|
| 179 | // sample the energy rate of the scattered gamma in the electron rest frame
|
|---|
| 180 | //
|
|---|
| 181 |
|
|---|
| 182 | G4double epsilon, epsilonsq, onecost, sint2, greject ;
|
|---|
| 183 |
|
|---|
| 184 | G4double epsilon0 = 1./(1. + 2.*E0_m);
|
|---|
| 185 | G4double epsilon0sq = epsilon0*epsilon0;
|
|---|
| 186 | G4double alpha1 = - log(epsilon0);
|
|---|
| 187 | G4double alpha2 = 0.5*(1.- epsilon0sq);
|
|---|
| 188 |
|
|---|
| 189 | do
|
|---|
| 190 | {
|
|---|
| 191 | if ( alpha1/(alpha1+alpha2) > G4UniformRand() )
|
|---|
| 192 | {
|
|---|
| 193 | epsilon = exp(-alpha1*G4UniformRand()); // epsilon0**r
|
|---|
| 194 | epsilonsq = epsilon*epsilon;
|
|---|
| 195 |
|
|---|
| 196 | }
|
|---|
| 197 | else
|
|---|
| 198 | {
|
|---|
| 199 | epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
|
|---|
| 200 | epsilon = sqrt(epsilonsq);
|
|---|
| 201 | };
|
|---|
| 202 |
|
|---|
| 203 | onecost = (1.- epsilon)/(epsilon*E0_m);
|
|---|
| 204 | sint2 = onecost*(2.-onecost);
|
|---|
| 205 | greject = 1. - epsilon*sint2/(1.+ epsilonsq);
|
|---|
| 206 |
|
|---|
| 207 | } while (greject < G4UniformRand());
|
|---|
| 208 |
|
|---|
| 209 | //
|
|---|
| 210 | // scattered gamma angles. ( Z - axis along the parent gamma)
|
|---|
| 211 | //
|
|---|
| 212 |
|
|---|
| 213 | G4double cosTeta = 1. - onecost;
|
|---|
| 214 | G4double sinTeta = sqrt (sint2);
|
|---|
| 215 | G4double Phi = twopi * G4UniformRand();
|
|---|
| 216 | G4double dirx = sinTeta*cos(Phi), diry = sinTeta*sin(Phi), dirz = cosTeta;
|
|---|
| 217 |
|
|---|
| 218 | //
|
|---|
| 219 | // update G4VParticleChange for the scattered gamma
|
|---|
| 220 | //
|
|---|
| 221 |
|
|---|
| 222 | G4ThreeVector gamDirection1 ( dirx,diry,dirz );
|
|---|
| 223 | gamDirection1.rotateUz(gamDirection0);
|
|---|
| 224 | G4double gamEnergy1 = epsilon*gamEnergy0;
|
|---|
| 225 | gamDirection1 *= gamEnergy1;
|
|---|
| 226 |
|
|---|
| 227 | G4LorentzVector gamma4vfinal = G4LorentzVector(gamDirection1,gamEnergy1);
|
|---|
| 228 |
|
|---|
| 229 |
|
|---|
| 230 | // kinematic of the scattered electron
|
|---|
| 231 | //
|
|---|
| 232 |
|
|---|
| 233 | G4double eKinEnergy = gamEnergy0 - gamEnergy1;
|
|---|
| 234 | G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
|
|---|
| 235 | eDirection = eDirection.unit();
|
|---|
| 236 | G4double eFinalMom = std::sqrt(eKinEnergy*(eKinEnergy+2*electron_mass_c2));
|
|---|
| 237 | eDirection *= eFinalMom;
|
|---|
| 238 | G4LorentzVector e4vfinal = G4LorentzVector(eDirection,gamEnergy1+electron_mass_c2);
|
|---|
| 239 |
|
|---|
| 240 | gamma4vfinal.boost(bst);
|
|---|
| 241 | e4vfinal.boost(bst);
|
|---|
| 242 |
|
|---|
| 243 | gamDirection1 = gamma4vfinal.vect();
|
|---|
| 244 | gamEnergy1 = gamDirection1.mag();
|
|---|
| 245 | gamDirection1 /= gamEnergy1;
|
|---|
| 246 |
|
|---|
| 247 |
|
|---|
| 248 |
|
|---|
| 249 |
|
|---|
| 250 | fParticleChange->SetProposedKineticEnergy(gamEnergy1);
|
|---|
| 251 |
|
|---|
| 252 | if( gamEnergy1 > lowestGammaEnergy )
|
|---|
| 253 | {
|
|---|
| 254 | gamDirection1 /= gamEnergy1;
|
|---|
| 255 | fParticleChange->ProposeMomentumDirection(gamDirection1);
|
|---|
| 256 | }
|
|---|
| 257 | else
|
|---|
| 258 | {
|
|---|
| 259 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 260 | gamEnergy1 += fParticleChange->GetLocalEnergyDeposit();
|
|---|
| 261 | fParticleChange->ProposeLocalEnergyDeposit(gamEnergy1);
|
|---|
| 262 | }
|
|---|
| 263 |
|
|---|
| 264 | eKinEnergy = e4vfinal.t()-electron_mass_c2;
|
|---|
| 265 |
|
|---|
| 266 | if( eKinEnergy > DBL_MIN )
|
|---|
| 267 | {
|
|---|
| 268 | // create G4DynamicParticle object for the electron.
|
|---|
| 269 | eDirection = e4vfinal.vect();
|
|---|
| 270 | G4double eFinMomMag = eDirection.mag();
|
|---|
| 271 | eDirection /= eFinMomMag;
|
|---|
| 272 | G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
|
|---|
| 273 | fvect->push_back(dp);
|
|---|
| 274 | }
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 278 |
|
|---|
| 279 |
|
|---|