// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4IonFluctuations.cc,v 1.26 2009/03/31 13:24:40 toshito Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4IonFluctuation // // Author: Vladimir Ivanchenko // // Creation date: 03.01.2002 // // Modifications: // // 28-12-02 add method Dispersion (V.Ivanchenko) // 07-02-03 change signature (V.Ivanchenko) // 13-02-03 Add name (V.Ivanchenko) // 23-05-03 Add control on parthalogical cases (V.Ivanchenko) // 16-10-03 Changed interface to Initialisation (V.Ivanchenko) // 27-09-07 Use FermiEnergy from material, add cut dependence (V.Ivanchenko) // 01-02-08 Add protection for small energies and optimise the code (V.Ivanchenko) // 01-06-08 Added initialisation of effective charge prestep (V.Ivanchenko) // // Class Description: // // ------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "G4IonFluctuations.hh" #include "Randomize.hh" #include "G4Poisson.hh" #include "G4Material.hh" #include "G4DynamicParticle.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... using namespace std; G4IonFluctuations::G4IonFluctuations(const G4String& nam) : G4VEmFluctuationModel(nam), particle(0), particleMass(proton_mass_c2), charge(1.0), chargeSquare(1.0), effChargeSquare(1.0), parameter(10.0*CLHEP::MeV/CLHEP::proton_mass_c2), minNumberInteractionsBohr(0.0), theBohrBeta2(50.0*keV/CLHEP::proton_mass_c2), minFraction(0.2), xmin(0.2), minLoss(0.001*eV) {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4IonFluctuations::~G4IonFluctuations() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4IonFluctuations::InitialiseMe(const G4ParticleDefinition* part) { particle = part; particleMass = part->GetPDGMass(); charge = part->GetPDGCharge()/eplus; chargeSquare = charge*charge; effChargeSquare= chargeSquare; uniFluct.InitialiseMe(part); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4IonFluctuations::SampleFluctuations(const G4Material* material, const G4DynamicParticle* dp, G4double& tmax, G4double& length, G4double& meanLoss) { // G4cout << "### meanLoss= " << meanLoss << G4endl; if(meanLoss <= minLoss) return meanLoss; //G4cout << "G4IonFluctuations::SampleFluctuations E(MeV)= " << dp->GetKineticEnergy() // << " Elim(MeV)= " << parameter*charge*particleMass << G4endl; // Vavilov fluctuations if(dp->GetKineticEnergy() > parameter*charge*particleMass) { return uniFluct.SampleFluctuations(material,dp,tmax,length,meanLoss); } G4double siga = Dispersion(material,dp,tmax,length); G4double loss = meanLoss; G4double navr = minNumberInteractionsBohr; navr = meanLoss*meanLoss/siga; //G4cout << "### siga= " << sqrt(siga) << " navr= " << navr << G4endl; // Gaussian fluctuation if (navr >= minNumberInteractionsBohr) { // Increase fluctuations for big fractional energy loss //G4cout << "siga= " << siga << G4endl; if ( meanLoss > minFraction*kineticEnergy ) { G4double gam = (kineticEnergy - meanLoss)/particleMass + 1.0; G4double b2 = 1.0 - 1.0/(gam*gam); if(b2 < xmin*beta2) b2 = xmin*beta2; G4double x = b2/beta2; G4double x3 = 1.0/(x*x*x); siga *= 0.25*(1.0 + x)*(x3 + (1.0/b2 - 0.5)/(1.0/beta2 - 0.5) ); } // G4cout << "siga= " << siga << G4endl; siga = sqrt(siga); G4double lossmax = meanLoss+meanLoss; if(siga > 5.0*meanLoss) { loss = lossmax*G4UniformRand(); } else { do { loss = G4RandGauss::shoot(meanLoss,siga); } while (0.0 > loss || loss > lossmax); } // Poisson fluctuations } else { G4double n = (G4double)(G4Poisson(navr)); loss = meanLoss*n/navr; } //G4cout << "meanLoss= " << meanLoss << " loss= " << loss << G4endl; return loss; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4IonFluctuations::Dispersion(const G4Material* material, const G4DynamicParticle* dp, G4double& tmax, G4double& length) { kineticEnergy = dp->GetKineticEnergy(); G4double etot = kineticEnergy + particleMass; beta2 = kineticEnergy*(kineticEnergy + 2.*particleMass)/(etot*etot); G4double electronDensity = material->GetElectronDensity(); /* G4cout << "e= " << kineticEnergy << " m= " << particleMass << " tmax= " << tmax << " l= " << length << " q^2= " << effChargeSquare << " beta2=" << beta2<< G4endl; */ G4double siga = (1. - beta2*0.5)*tmax*length*electronDensity* twopi_mc2_rcl2*chargeSquare/beta2; // Low velocity - additional ion charge fluctuations according to // Q.Yang et al., NIM B61(1991)149-155. //G4cout << "sigE= " << sqrt(siga) << " charge= " << charge <GetTotNbOfAtomsPerVolume(); G4double fac = Factor(material, Z); // heavy ion correction // G4double f1 = 1.065e-4*chargeSquare; // if(beta2 > theBohrBeta2) f1/= beta2; // else f1/= theBohrBeta2; // if(f1 > 2.5) f1 = 2.5; // fac *= (1.0 + f1); // taking into account the cut G4double fac_cut = 1.0 + (fac - 1.0)*2.0*electron_mass_c2*beta2/(tmax*(1.0 - beta2)); if(fac_cut > 0.01 && fac > 0.01) { siga *= fac_cut; } //G4cout << "siga(keV)= " << sqrt(siga)/keV << " fac= " << fac // << " f1= " << f1 << G4endl; return siga; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4IonFluctuations::Factor(const G4Material* material, G4double Z) { // The aproximation of energy loss fluctuations // Q.Yang et al., NIM B61(1991)149-155. // Reduced energy in MeV/AMU G4double energy = kineticEnergy *amu_c2/(particleMass*MeV) ; // simple approximation for higher beta2 G4double s1 = RelativisticFactor(material, Z); // tabulation for lower beta2 if( beta2 < 3.0*theBohrBeta2*Z ) { static G4double a[96][4] = { {-0.3291, -0.8312, 0.2460, -1.0220}, {-0.5615, -0.5898, 0.5205, -0.7258}, {-0.5280, -0.4981, 0.5519, -0.5865}, {-0.5125, -0.4625, 0.5660, -0.5190}, {-0.5127, -0.8595, 0.5626, -0.8721}, {-0.5174, -1.1930, 0.5565, -1.1980}, {-0.5179, -1.1850, 0.5560, -1.2070}, {-0.5209, -0.9355, 0.5590, -1.0250}, {-0.5255, -0.7766, 0.5720, -0.9412}, {-0.5776, -0.6665, 0.6598, -0.8484}, {-0.6013, -0.6045, 0.7321, -0.7671}, {-0.5781, -0.5518, 0.7605, -0.6919}, {-0.5587, -0.4981, 0.7835, -0.6195}, {-0.5466, -0.4656, 0.7978, -0.5771}, {-0.5406, -0.4690, 0.8031, -0.5718}, {-0.5391, -0.5061, 0.8024, -0.5974}, {-0.5380, -0.6483, 0.7962, -0.6970}, {-0.5355, -0.7722, 0.7962, -0.7839}, {-0.5329, -0.7720, 0.7988, -0.7846}, {-0.5335, -0.7671, 0.7984, -0.7933}, {-0.5324, -0.7612, 0.7998, -0.8031}, {-0.5305, -0.7300, 0.8031, -0.7990}, {-0.5307, -0.7178, 0.8049, -0.8216}, {-0.5248, -0.6621, 0.8165, -0.7919}, {-0.5180, -0.6502, 0.8266, -0.7986}, {-0.5084, -0.6408, 0.8396, -0.8048}, {-0.4967, -0.6331, 0.8549, -0.8093}, {-0.4861, -0.6508, 0.8712, -0.8432}, {-0.4700, -0.6186, 0.8961, -0.8132}, {-0.4545, -0.5720, 0.9227, -0.7710}, {-0.4404, -0.5226, 0.9481, -0.7254}, {-0.4288, -0.4778, 0.9701, -0.6850}, {-0.4199, -0.4425, 0.9874, -0.6539}, {-0.4131, -0.4188, 0.9998, -0.6332}, {-0.4089, -0.4057, 1.0070, -0.6218}, {-0.4039, -0.3913, 1.0150, -0.6107}, {-0.3987, -0.3698, 1.0240, -0.5938}, {-0.3977, -0.3608, 1.0260, -0.5852}, {-0.3972, -0.3600, 1.0260, -0.5842}, {-0.3985, -0.3803, 1.0200, -0.6013}, {-0.3985, -0.3979, 1.0150, -0.6168}, {-0.3968, -0.3990, 1.0160, -0.6195}, {-0.3971, -0.4432, 1.0050, -0.6591}, {-0.3944, -0.4665, 1.0010, -0.6825}, {-0.3924, -0.5109, 0.9921, -0.7235}, {-0.3882, -0.5158, 0.9947, -0.7343}, {-0.3838, -0.5125, 0.9999, -0.7370}, {-0.3786, -0.4976, 1.0090, -0.7310}, {-0.3741, -0.4738, 1.0200, -0.7155}, {-0.3969, -0.4496, 1.0320, -0.6982}, {-0.3663, -0.4297, 1.0430, -0.6828}, {-0.3630, -0.4120, 1.0530, -0.6689}, {-0.3597, -0.3964, 1.0620, -0.6564}, {-0.3555, -0.3809, 1.0720, -0.6454}, {-0.3525, -0.3607, 1.0820, -0.6289}, {-0.3505, -0.3465, 1.0900, -0.6171}, {-0.3397, -0.3570, 1.1020, -0.6384}, {-0.3314, -0.3552, 1.1130, -0.6441}, {-0.3235, -0.3531, 1.1230, -0.6498}, {-0.3150, -0.3483, 1.1360, -0.6539}, {-0.3060, -0.3441, 1.1490, -0.6593}, {-0.2968, -0.3396, 1.1630, -0.6649}, {-0.2935, -0.3225, 1.1760, -0.6527}, {-0.2797, -0.3262, 1.1940, -0.6722}, {-0.2704, -0.3202, 1.2100, -0.6770}, {-0.2815, -0.3227, 1.2480, -0.6775}, {-0.2880, -0.3245, 1.2810, -0.6801}, {-0.3034, -0.3263, 1.3270, -0.6778}, {-0.2936, -0.3215, 1.3430, -0.6835}, {-0.3282, -0.3200, 1.3980, -0.6650}, {-0.3260, -0.3070, 1.4090, -0.6552}, {-0.3511, -0.3074, 1.4470, -0.6442}, {-0.3501, -0.3064, 1.4500, -0.6442}, {-0.3490, -0.3027, 1.4550, -0.6418}, {-0.3487, -0.3048, 1.4570, -0.6447}, {-0.3478, -0.3074, 1.4600, -0.6483}, {-0.3501, -0.3283, 1.4540, -0.6669}, {-0.3494, -0.3373, 1.4550, -0.6765}, {-0.3485, -0.3373, 1.4570, -0.6774}, {-0.3462, -0.3300, 1.4630, -0.6728}, {-0.3462, -0.3225, 1.4690, -0.6662}, {-0.3453, -0.3094, 1.4790, -0.6553}, {-0.3844, -0.3134, 1.5240, -0.6412}, {-0.3848, -0.3018, 1.5310, -0.6303}, {-0.3862, -0.2955, 1.5360, -0.6237}, {-0.4262, -0.2991, 1.5860, -0.6115}, {-0.4278, -0.2910, 1.5900, -0.6029}, {-0.4303, -0.2817, 1.5940, -0.5927}, {-0.4315, -0.2719, 1.6010, -0.5829}, {-0.4359, -0.2914, 1.6050, -0.6010}, {-0.4365, -0.2982, 1.6080, -0.6080}, {-0.4253, -0.3037, 1.6120, -0.6150}, {-0.4335, -0.3245, 1.6160, -0.6377}, {-0.4307, -0.3292, 1.6210, -0.6447}, {-0.4284, -0.3204, 1.6290, -0.6380}, {-0.4227, -0.3217, 1.6360, -0.6438} } ; G4int iz = G4int(Z) - 2; if( 0 > iz ) iz = 0; else if(95 < iz ) iz = 95; G4double ss = 1.0 + a[iz][0]*pow(energy,a[iz][1])+ + a[iz][2]*pow(energy,a[iz][3]); // protection for the validity range for low beta G4double slim = 0.001; if(ss < slim) s1 = 1.0/slim; // for high value of beta else if(s1*ss < 1.0) s1 = 1.0/ss; } G4int i = 0 ; G4double factor = 1.0 ; // The index of set of parameters i = 0 for protons(hadrons) in gases // 1 for protons(hadrons) in solids // 2 for ions in atomic gases // 3 for ions in molecular gases // 4 for ions in solids static G4double b[5][4] = { {0.1014, 0.3700, 0.9642, 3.987}, {0.1955, 0.6941, 2.522, 1.040}, {0.05058, 0.08975, 0.1419, 10.80}, {0.05009, 0.08660, 0.2751, 3.787}, {0.01273, 0.03458, 0.3951, 3.812} } ; // protons (hadrons) if(1.5 > charge) { if( kStateGas != material->GetState() ) i = 1 ; // ions } else { factor = charge * pow(charge/Z, 0.33333333); if( kStateGas == material->GetState() ) { energy /= (charge * sqrt(charge)) ; if(1 == (material->GetNumberOfElements())) { i = 2 ; } else { i = 3 ; } } else { energy /= (charge * sqrt(charge*Z)) ; i = 4 ; } } G4double x = b[i][2]; G4double y = energy * b[i][3]; if(y <= 0.2) x *= (y*(1.0 - 0.5*y)); else x *= (1.0 - exp(-y)); y = energy - b[i][1]; G4double s2 = factor * x * b[i][0] / (y*y + x*x); /* G4cout << "s1= " << s1 << " s2= " << s2 << " q^2= " << effChargeSquare << " e= " << energy << G4endl; */ return s1*effChargeSquare/chargeSquare + s2; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4IonFluctuations::RelativisticFactor(const G4Material* mat, G4double Z) { G4double eF = mat->GetIonisation()->GetFermiEnergy(); G4double I = mat->GetIonisation()->GetMeanExcitationEnergy(); // H.Geissel et al. NIM B, 195 (2002) 3. G4double bF2= 2.0*eF/electron_mass_c2; G4double f = 0.4*(1.0 - beta2)/((1.0 - 0.5*beta2)*Z); if(beta2 > bF2) f *= log(2.0*electron_mass_c2*beta2/I)*bF2/beta2; else f *= log(4.0*eF/I); // G4cout << "f= " << f << " beta2= " << beta2 // << " bf2= " << bF2 << " q^2= " << chargeSquare << G4endl; return 1.0 + f; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4IonFluctuations::SetParticleAndCharge(const G4ParticleDefinition* part, G4double q2) { if(part != particle) { particle = part; particleMass = part->GetPDGMass(); charge = part->GetPDGCharge()/eplus; chargeSquare = charge*charge; } effChargeSquare = q2; uniFluct.SetParticleAndCharge(part, q2); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....