| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4MollerBhabhaModel.cc,v 1.31 2009/02/20 12:06:37 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4MollerBhabhaModel
|
|---|
| 35 | //
|
|---|
| 36 | // Author: Vladimir Ivanchenko on base of Laszlo Urban code
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 03.01.2002
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| 41 | //
|
|---|
| 42 | // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko)
|
|---|
| 43 | // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko)
|
|---|
| 44 | // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
|
|---|
| 45 | // 27-01-03 Make models region aware (V.Ivanchenko)
|
|---|
| 46 | // 13-02-03 Add name (V.Ivanchenko)
|
|---|
| 47 | // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
|
|---|
| 48 | // 25-07-05 Add protection in calculation of recoil direction for the case
|
|---|
| 49 | // of complete energy transfer from e+ to e- (V.Ivanchenko)
|
|---|
| 50 | // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma)
|
|---|
| 51 | // 15-05-06 Fix MinEnergyCut (V.Ivanchenko)
|
|---|
| 52 | //
|
|---|
| 53 | //
|
|---|
| 54 | // Class Description:
|
|---|
| 55 | //
|
|---|
| 56 | // Implementation of energy loss and delta-electron production by e+/e-
|
|---|
| 57 | //
|
|---|
| 58 | // -------------------------------------------------------------------
|
|---|
| 59 | //
|
|---|
| 60 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 61 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 62 |
|
|---|
| 63 | #include "G4MollerBhabhaModel.hh"
|
|---|
| 64 | #include "G4Electron.hh"
|
|---|
| 65 | #include "G4Positron.hh"
|
|---|
| 66 | #include "Randomize.hh"
|
|---|
| 67 | #include "G4ParticleChangeForLoss.hh"
|
|---|
| 68 |
|
|---|
| 69 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 70 |
|
|---|
| 71 | using namespace std;
|
|---|
| 72 |
|
|---|
| 73 | G4MollerBhabhaModel::G4MollerBhabhaModel(const G4ParticleDefinition* p,
|
|---|
| 74 | const G4String& nam)
|
|---|
| 75 | : G4VEmModel(nam),
|
|---|
| 76 | particle(0),
|
|---|
| 77 | isElectron(true),
|
|---|
| 78 | twoln10(2.0*log(10.0)),
|
|---|
| 79 | lowLimit(0.2*keV),
|
|---|
| 80 | isInitialised(false)
|
|---|
| 81 | {
|
|---|
| 82 | theElectron = G4Electron::Electron();
|
|---|
| 83 | if(p) SetParticle(p);
|
|---|
| 84 | }
|
|---|
| 85 |
|
|---|
| 86 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 87 |
|
|---|
| 88 | G4MollerBhabhaModel::~G4MollerBhabhaModel()
|
|---|
| 89 | {}
|
|---|
| 90 |
|
|---|
| 91 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 92 |
|
|---|
| 93 | G4double G4MollerBhabhaModel::MinEnergyCut(const G4ParticleDefinition*,
|
|---|
| 94 | const G4MaterialCutsCouple* couple)
|
|---|
| 95 | {
|
|---|
| 96 | G4double electronDensity = couple->GetMaterial()->GetElectronDensity();
|
|---|
| 97 | G4double Zeff = electronDensity/couple->GetMaterial()->GetTotNbOfAtomsPerVolume();
|
|---|
| 98 | return 0.25*sqrt(Zeff)*keV;
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 102 |
|
|---|
| 103 | G4double G4MollerBhabhaModel::MaxSecondaryEnergy(const G4ParticleDefinition*,
|
|---|
| 104 | G4double kinEnergy)
|
|---|
| 105 | {
|
|---|
| 106 | G4double tmax = kinEnergy;
|
|---|
| 107 | if(isElectron) tmax *= 0.5;
|
|---|
| 108 | return tmax;
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 112 |
|
|---|
| 113 | void G4MollerBhabhaModel::Initialise(const G4ParticleDefinition* p,
|
|---|
| 114 | const G4DataVector&)
|
|---|
| 115 | {
|
|---|
| 116 | if(!particle) SetParticle(p);
|
|---|
| 117 | SetDeexcitationFlag(false);
|
|---|
| 118 |
|
|---|
| 119 | if(isInitialised) return;
|
|---|
| 120 |
|
|---|
| 121 | isInitialised = true;
|
|---|
| 122 | if(pParticleChange) {
|
|---|
| 123 | fParticleChange = reinterpret_cast<G4ParticleChangeForLoss*>
|
|---|
| 124 | (pParticleChange);
|
|---|
| 125 | } else {
|
|---|
| 126 | fParticleChange = new G4ParticleChangeForLoss();
|
|---|
| 127 | }
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 131 |
|
|---|
| 132 | G4double G4MollerBhabhaModel::ComputeCrossSectionPerElectron(
|
|---|
| 133 | const G4ParticleDefinition* p,
|
|---|
| 134 | G4double kineticEnergy,
|
|---|
| 135 | G4double cutEnergy,
|
|---|
| 136 | G4double maxEnergy)
|
|---|
| 137 | {
|
|---|
| 138 | if(!particle) SetParticle(p);
|
|---|
| 139 |
|
|---|
| 140 | G4double cross = 0.0;
|
|---|
| 141 | G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
|
|---|
| 142 | tmax = min(maxEnergy, tmax);
|
|---|
| 143 |
|
|---|
| 144 | if(cutEnergy < tmax) {
|
|---|
| 145 |
|
|---|
| 146 | G4double xmin = cutEnergy/kineticEnergy;
|
|---|
| 147 | G4double xmax = tmax/kineticEnergy;
|
|---|
| 148 | G4double gam = kineticEnergy/electron_mass_c2 + 1.0;
|
|---|
| 149 | G4double gamma2= gam*gam;
|
|---|
| 150 | G4double beta2 = 1.0 - 1.0/gamma2;
|
|---|
| 151 |
|
|---|
| 152 | //Moller (e-e-) scattering
|
|---|
| 153 | if (isElectron) {
|
|---|
| 154 |
|
|---|
| 155 | G4double g = (2.0*gam - 1.0)/gamma2;
|
|---|
| 156 | cross = ((xmax - xmin)*(1.0 - g + 1.0/(xmin*xmax)
|
|---|
| 157 | + 1.0/((1.0-xmin)*(1.0 - xmax)))
|
|---|
| 158 | - g*log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2;
|
|---|
| 159 |
|
|---|
| 160 | //Bhabha (e+e-) scattering
|
|---|
| 161 | } else {
|
|---|
| 162 |
|
|---|
| 163 | G4double y = 1.0/(1.0 + gam);
|
|---|
| 164 | G4double y2 = y*y;
|
|---|
| 165 | G4double y12 = 1.0 - 2.0*y;
|
|---|
| 166 | G4double b1 = 2.0 - y2;
|
|---|
| 167 | G4double b2 = y12*(3.0 + y2);
|
|---|
| 168 | G4double y122= y12*y12;
|
|---|
| 169 | G4double b4 = y122*y12;
|
|---|
| 170 | G4double b3 = b4 + y122;
|
|---|
| 171 |
|
|---|
| 172 | cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2
|
|---|
| 173 | - 0.5*b3*(xmin + xmax)
|
|---|
| 174 | + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0)
|
|---|
| 175 | - b1*log(xmax/xmin);
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | cross *= twopi_mc2_rcl2/kineticEnergy;
|
|---|
| 179 | }
|
|---|
| 180 | return cross;
|
|---|
| 181 | }
|
|---|
| 182 |
|
|---|
| 183 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 184 |
|
|---|
| 185 | G4double G4MollerBhabhaModel::ComputeCrossSectionPerAtom(
|
|---|
| 186 | const G4ParticleDefinition* p,
|
|---|
| 187 | G4double kineticEnergy,
|
|---|
| 188 | G4double Z, G4double,
|
|---|
| 189 | G4double cutEnergy,
|
|---|
| 190 | G4double maxEnergy)
|
|---|
| 191 | {
|
|---|
| 192 | G4double cross = Z*ComputeCrossSectionPerElectron
|
|---|
| 193 | (p,kineticEnergy,cutEnergy,maxEnergy);
|
|---|
| 194 | return cross;
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 198 |
|
|---|
| 199 | G4double G4MollerBhabhaModel::CrossSectionPerVolume(
|
|---|
| 200 | const G4Material* material,
|
|---|
| 201 | const G4ParticleDefinition* p,
|
|---|
| 202 | G4double kineticEnergy,
|
|---|
| 203 | G4double cutEnergy,
|
|---|
| 204 | G4double maxEnergy)
|
|---|
| 205 | {
|
|---|
| 206 | G4double eDensity = material->GetElectronDensity();
|
|---|
| 207 | G4double cross = eDensity*ComputeCrossSectionPerElectron
|
|---|
| 208 | (p,kineticEnergy,cutEnergy,maxEnergy);
|
|---|
| 209 | return cross;
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 213 |
|
|---|
| 214 | G4double G4MollerBhabhaModel::ComputeDEDXPerVolume(
|
|---|
| 215 | const G4Material* material,
|
|---|
| 216 | const G4ParticleDefinition* p,
|
|---|
| 217 | G4double kineticEnergy,
|
|---|
| 218 | G4double cutEnergy)
|
|---|
| 219 | {
|
|---|
| 220 | if(!particle) SetParticle(p);
|
|---|
| 221 | // calculate the dE/dx due to the ionization by Seltzer-Berger formula
|
|---|
| 222 |
|
|---|
| 223 | G4double electronDensity = material->GetElectronDensity();
|
|---|
| 224 | G4double Zeff = electronDensity/material->GetTotNbOfAtomsPerVolume();
|
|---|
| 225 | G4double th = 0.25*sqrt(Zeff)*keV;
|
|---|
| 226 | G4double tkin = kineticEnergy;
|
|---|
| 227 | G4bool lowEnergy = false;
|
|---|
| 228 | if (kineticEnergy < th) {
|
|---|
| 229 | tkin = th;
|
|---|
| 230 | lowEnergy = true;
|
|---|
| 231 | }
|
|---|
| 232 | G4double tau = tkin/electron_mass_c2;
|
|---|
| 233 | G4double gam = tau + 1.0;
|
|---|
| 234 | G4double gamma2= gam*gam;
|
|---|
| 235 | G4double beta2 = 1. - 1./gamma2;
|
|---|
| 236 | G4double bg2 = beta2*gamma2;
|
|---|
| 237 |
|
|---|
| 238 | G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
|
|---|
| 239 | eexc /= electron_mass_c2;
|
|---|
| 240 | G4double eexc2 = eexc*eexc;
|
|---|
| 241 |
|
|---|
| 242 | G4double d = min(cutEnergy, MaxSecondaryEnergy(p, tkin))/electron_mass_c2;
|
|---|
| 243 | G4double dedx;
|
|---|
| 244 |
|
|---|
| 245 | // electron
|
|---|
| 246 | if (isElectron) {
|
|---|
| 247 |
|
|---|
| 248 | dedx = log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2
|
|---|
| 249 | + log((tau-d)*d) + tau/(tau-d)
|
|---|
| 250 | + (0.5*d*d + (2.0*tau + 1.)*log(1. - d/tau))/gamma2;
|
|---|
| 251 |
|
|---|
| 252 | //positron
|
|---|
| 253 | } else {
|
|---|
| 254 |
|
|---|
| 255 | G4double d2 = d*d*0.5;
|
|---|
| 256 | G4double d3 = d2*d/1.5;
|
|---|
| 257 | G4double d4 = d3*d*3.75;
|
|---|
| 258 | G4double y = 1.0/(1.0 + gam);
|
|---|
| 259 | dedx = log(2.0*(tau + 2.0)/eexc2) + log(tau*d)
|
|---|
| 260 | - beta2*(tau + 2.0*d - y*(3.0*d2
|
|---|
| 261 | + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau;
|
|---|
| 262 | }
|
|---|
| 263 |
|
|---|
| 264 | //density correction
|
|---|
| 265 | G4double cden = material->GetIonisation()->GetCdensity();
|
|---|
| 266 | G4double mden = material->GetIonisation()->GetMdensity();
|
|---|
| 267 | G4double aden = material->GetIonisation()->GetAdensity();
|
|---|
| 268 | G4double x0den = material->GetIonisation()->GetX0density();
|
|---|
| 269 | G4double x1den = material->GetIonisation()->GetX1density();
|
|---|
| 270 | G4double x = log(bg2)/twoln10;
|
|---|
| 271 |
|
|---|
| 272 | if (x >= x0den) {
|
|---|
| 273 | dedx -= twoln10*x - cden;
|
|---|
| 274 | if (x < x1den) dedx -= aden*pow(x1den-x, mden);
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | // now you can compute the total ionization loss
|
|---|
| 278 | dedx *= twopi_mc2_rcl2*electronDensity/beta2;
|
|---|
| 279 | if (dedx < 0.0) dedx = 0.0;
|
|---|
| 280 |
|
|---|
| 281 | // lowenergy extrapolation
|
|---|
| 282 |
|
|---|
| 283 | if (lowEnergy) {
|
|---|
| 284 |
|
|---|
| 285 | if (kineticEnergy >= lowLimit) dedx *= sqrt(tkin/kineticEnergy);
|
|---|
| 286 | else dedx *= sqrt(tkin*kineticEnergy)/lowLimit;
|
|---|
| 287 |
|
|---|
| 288 | }
|
|---|
| 289 | return dedx;
|
|---|
| 290 | }
|
|---|
| 291 |
|
|---|
| 292 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 293 |
|
|---|
| 294 | void G4MollerBhabhaModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
|
|---|
| 295 | const G4MaterialCutsCouple*,
|
|---|
| 296 | const G4DynamicParticle* dp,
|
|---|
| 297 | G4double tmin,
|
|---|
| 298 | G4double maxEnergy)
|
|---|
| 299 | {
|
|---|
| 300 | G4double tmax = std::min(maxEnergy, MaxSecondaryKinEnergy(dp));
|
|---|
| 301 | if(tmin >= tmax) return;
|
|---|
| 302 |
|
|---|
| 303 | G4double kineticEnergy = dp->GetKineticEnergy();
|
|---|
| 304 | G4double energy = kineticEnergy + electron_mass_c2;
|
|---|
| 305 | G4double totalMomentum = sqrt(kineticEnergy*(energy + electron_mass_c2));
|
|---|
| 306 | G4double xmin = tmin/kineticEnergy;
|
|---|
| 307 | G4double xmax = tmax/kineticEnergy;
|
|---|
| 308 | G4double gam = energy/electron_mass_c2;
|
|---|
| 309 | G4double gamma2 = gam*gam;
|
|---|
| 310 | G4double beta2 = 1.0 - 1.0/gamma2;
|
|---|
| 311 | G4double x, z, q, grej;
|
|---|
| 312 |
|
|---|
| 313 | G4ThreeVector direction = dp->GetMomentumDirection();
|
|---|
| 314 |
|
|---|
| 315 | //Moller (e-e-) scattering
|
|---|
| 316 | if (isElectron) {
|
|---|
| 317 |
|
|---|
| 318 | G4double g = (2.0*gam - 1.0)/gamma2;
|
|---|
| 319 | G4double y = 1.0 - xmax;
|
|---|
| 320 | grej = 1.0 - g*xmax + xmax*xmax*(1.0 - g + (1.0 - g*y)/(y*y));
|
|---|
| 321 |
|
|---|
| 322 | do {
|
|---|
| 323 | q = G4UniformRand();
|
|---|
| 324 | x = xmin*xmax/(xmin*(1.0 - q) + xmax*q);
|
|---|
| 325 | y = 1.0 - x;
|
|---|
| 326 | z = 1.0 - g*x + x*x*(1.0 - g + (1.0 - g*y)/(y*y));
|
|---|
| 327 | /*
|
|---|
| 328 | if(z > grej) {
|
|---|
| 329 | G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! "
|
|---|
| 330 | << "Majorant " << grej << " < "
|
|---|
| 331 | << z << " for x= " << x
|
|---|
| 332 | << " e-e- scattering"
|
|---|
| 333 | << G4endl;
|
|---|
| 334 | }
|
|---|
| 335 | */
|
|---|
| 336 | } while(grej * G4UniformRand() > z);
|
|---|
| 337 |
|
|---|
| 338 | //Bhabha (e+e-) scattering
|
|---|
| 339 | } else {
|
|---|
| 340 |
|
|---|
| 341 | G4double y = 1.0/(1.0 + gam);
|
|---|
| 342 | G4double y2 = y*y;
|
|---|
| 343 | G4double y12 = 1.0 - 2.0*y;
|
|---|
| 344 | G4double b1 = 2.0 - y2;
|
|---|
| 345 | G4double b2 = y12*(3.0 + y2);
|
|---|
| 346 | G4double y122= y12*y12;
|
|---|
| 347 | G4double b4 = y122*y12;
|
|---|
| 348 | G4double b3 = b4 + y122;
|
|---|
| 349 |
|
|---|
| 350 | y = xmax*xmax;
|
|---|
| 351 | grej = -xmin*b1;
|
|---|
| 352 | grej += y*b2;
|
|---|
| 353 | grej -= xmin*xmin*xmin*b3;
|
|---|
| 354 | grej += y*y*b4;
|
|---|
| 355 | grej *= beta2;
|
|---|
| 356 | grej += 1.0;
|
|---|
| 357 | do {
|
|---|
| 358 | q = G4UniformRand();
|
|---|
| 359 | x = xmin*xmax/(xmin*(1.0 - q) + xmax*q);
|
|---|
| 360 | z = -x*b1;
|
|---|
| 361 | y = x*x;
|
|---|
| 362 | z += y*b2;
|
|---|
| 363 | y *= x;
|
|---|
| 364 | z -= y*b3;
|
|---|
| 365 | y *= x;
|
|---|
| 366 | z += y*b4;
|
|---|
| 367 | z *= beta2;
|
|---|
| 368 | z += 1.0;
|
|---|
| 369 | /*
|
|---|
| 370 | if(z > grej) {
|
|---|
| 371 | G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! "
|
|---|
| 372 | << "Majorant " << grej << " < "
|
|---|
| 373 | << z << " for x= " << x
|
|---|
| 374 | << " e+e- scattering"
|
|---|
| 375 | << G4endl;
|
|---|
| 376 | }
|
|---|
| 377 | */
|
|---|
| 378 | } while(grej * G4UniformRand() > z);
|
|---|
| 379 | }
|
|---|
| 380 |
|
|---|
| 381 | G4double deltaKinEnergy = x * kineticEnergy;
|
|---|
| 382 |
|
|---|
| 383 | G4double deltaMomentum =
|
|---|
| 384 | sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
|
|---|
| 385 | G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
|
|---|
| 386 | (deltaMomentum * totalMomentum);
|
|---|
| 387 | G4double sint = 1.0 - cost*cost;
|
|---|
| 388 | if(sint > 0.0) sint = sqrt(sint);
|
|---|
| 389 |
|
|---|
| 390 | G4double phi = twopi * G4UniformRand() ;
|
|---|
| 391 |
|
|---|
| 392 | G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost) ;
|
|---|
| 393 | deltaDirection.rotateUz(direction);
|
|---|
| 394 |
|
|---|
| 395 | // primary change
|
|---|
| 396 | kineticEnergy -= deltaKinEnergy;
|
|---|
| 397 | fParticleChange->SetProposedKineticEnergy(kineticEnergy);
|
|---|
| 398 |
|
|---|
| 399 | if(kineticEnergy > DBL_MIN) {
|
|---|
| 400 | G4ThreeVector dir = totalMomentum*direction - deltaMomentum*deltaDirection;
|
|---|
| 401 | direction = dir.unit();
|
|---|
| 402 | fParticleChange->SetProposedMomentumDirection(direction);
|
|---|
| 403 | }
|
|---|
| 404 |
|
|---|
| 405 | // create G4DynamicParticle object for delta ray
|
|---|
| 406 | G4DynamicParticle* delta = new G4DynamicParticle(theElectron,
|
|---|
| 407 | deltaDirection,deltaKinEnergy);
|
|---|
| 408 | vdp->push_back(delta);
|
|---|
| 409 | }
|
|---|
| 410 |
|
|---|
| 411 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|