// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4MollerBhabhaModel.cc,v 1.38 2010/04/06 17:10:16 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4MollerBhabhaModel // // Author: Vladimir Ivanchenko on base of Laszlo Urban code // // Creation date: 03.01.2002 // // Modifications: // // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) // 27-01-03 Make models region aware (V.Ivanchenko) // 13-02-03 Add name (V.Ivanchenko) // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) // 25-07-05 Add protection in calculation of recoil direction for the case // of complete energy transfer from e+ to e- (V.Ivanchenko) // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) // 15-05-06 Fix MinEnergyCut (V.Ivanchenko) // // // Class Description: // // Implementation of energy loss and delta-electron production by e+/e- // // ------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #include "G4MollerBhabhaModel.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "Randomize.hh" #include "G4ParticleChangeForLoss.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... using namespace std; G4MollerBhabhaModel::G4MollerBhabhaModel(const G4ParticleDefinition* p, const G4String& nam) : G4VEmModel(nam), particle(0), isElectron(true), twoln10(2.0*log(10.0)), lowLimit(0.2*keV), isInitialised(false) { theElectron = G4Electron::Electron(); if(p) SetParticle(p); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4MollerBhabhaModel::~G4MollerBhabhaModel() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MollerBhabhaModel::MinEnergyCut(const G4ParticleDefinition*, const G4MaterialCutsCouple* /*couple*/) { // G4double electronDensity = couple->GetMaterial()->GetElectronDensity(); //G4double Zeff = electronDensity/couple->GetMaterial()->GetTotNbOfAtomsPerVolume(); //return 0.25*sqrt(Zeff)*keV; //return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); return 0.1*keV; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MollerBhabhaModel::MaxSecondaryEnergy(const G4ParticleDefinition*, G4double kinEnergy) { G4double tmax = kinEnergy; if(isElectron) tmax *= 0.5; return tmax; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void G4MollerBhabhaModel::Initialise(const G4ParticleDefinition* p, const G4DataVector&) { if(!particle) SetParticle(p); SetDeexcitationFlag(false); if(isInitialised) return; isInitialised = true; fParticleChange = GetParticleChangeForLoss(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MollerBhabhaModel::ComputeCrossSectionPerElectron( const G4ParticleDefinition* p, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) { if(!particle) SetParticle(p); G4double cross = 0.0; G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); tmax = min(maxEnergy, tmax); if(cutEnergy < tmax) { G4double xmin = cutEnergy/kineticEnergy; G4double xmax = tmax/kineticEnergy; G4double gam = kineticEnergy/electron_mass_c2 + 1.0; G4double gamma2= gam*gam; G4double beta2 = 1.0 - 1.0/gamma2; //Moller (e-e-) scattering if (isElectron) { G4double g = (2.0*gam - 1.0)/gamma2; cross = ((xmax - xmin)*(1.0 - g + 1.0/(xmin*xmax) + 1.0/((1.0-xmin)*(1.0 - xmax))) - g*log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2; //Bhabha (e+e-) scattering } else { G4double y = 1.0/(1.0 + gam); G4double y2 = y*y; G4double y12 = 1.0 - 2.0*y; G4double b1 = 2.0 - y2; G4double b2 = y12*(3.0 + y2); G4double y122= y12*y12; G4double b4 = y122*y12; G4double b3 = b4 + y122; cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2 - 0.5*b3*(xmin + xmax) + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0) - b1*log(xmax/xmin); } cross *= twopi_mc2_rcl2/kineticEnergy; } return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MollerBhabhaModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition* p, G4double kineticEnergy, G4double Z, G4double, G4double cutEnergy, G4double maxEnergy) { G4double cross = Z*ComputeCrossSectionPerElectron (p,kineticEnergy,cutEnergy,maxEnergy); return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MollerBhabhaModel::CrossSectionPerVolume( const G4Material* material, const G4ParticleDefinition* p, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) { G4double eDensity = material->GetElectronDensity(); G4double cross = eDensity*ComputeCrossSectionPerElectron (p,kineticEnergy,cutEnergy,maxEnergy); return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MollerBhabhaModel::ComputeDEDXPerVolume( const G4Material* material, const G4ParticleDefinition* p, G4double kineticEnergy, G4double cutEnergy) { if(!particle) SetParticle(p); // calculate the dE/dx due to the ionization by Seltzer-Berger formula G4double electronDensity = material->GetElectronDensity(); G4double Zeff = electronDensity/material->GetTotNbOfAtomsPerVolume(); G4double th = 0.25*sqrt(Zeff)*keV; G4double tkin = kineticEnergy; G4bool lowEnergy = false; if (kineticEnergy < th) { tkin = th; lowEnergy = true; } G4double tau = tkin/electron_mass_c2; G4double gam = tau + 1.0; G4double gamma2= gam*gam; G4double beta2 = 1. - 1./gamma2; G4double bg2 = beta2*gamma2; G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); eexc /= electron_mass_c2; G4double eexc2 = eexc*eexc; G4double d = min(cutEnergy, MaxSecondaryEnergy(p, tkin))/electron_mass_c2; G4double dedx; // electron if (isElectron) { dedx = log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2 + log((tau-d)*d) + tau/(tau-d) + (0.5*d*d + (2.0*tau + 1.)*log(1. - d/tau))/gamma2; //positron } else { G4double d2 = d*d*0.5; G4double d3 = d2*d/1.5; G4double d4 = d3*d*3.75; G4double y = 1.0/(1.0 + gam); dedx = log(2.0*(tau + 2.0)/eexc2) + log(tau*d) - beta2*(tau + 2.0*d - y*(3.0*d2 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau; } //density correction //G4double cden = material->GetIonisation()->GetCdensity(); //G4double mden = material->GetIonisation()->GetMdensity(); //G4double aden = material->GetIonisation()->GetAdensity(); //G4double x0den = material->GetIonisation()->GetX0density(); //G4double x1den = material->GetIonisation()->GetX1density(); G4double x = log(bg2)/twoln10; //if (x >= x0den) { // dedx -= twoln10*x - cden; // if (x < x1den) dedx -= aden*pow(x1den-x, mden); //} dedx -= material->GetIonisation()->DensityCorrection(x); // now you can compute the total ionization loss dedx *= twopi_mc2_rcl2*electronDensity/beta2; if (dedx < 0.0) dedx = 0.0; // lowenergy extrapolation if (lowEnergy) { if (kineticEnergy >= lowLimit) dedx *= sqrt(tkin/kineticEnergy); else dedx *= sqrt(tkin*kineticEnergy)/lowLimit; } return dedx; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void G4MollerBhabhaModel::SampleSecondaries(std::vector* vdp, const G4MaterialCutsCouple*, const G4DynamicParticle* dp, G4double tmin, G4double maxEnergy) { G4double kineticEnergy = dp->GetKineticEnergy(); G4double tmax = kineticEnergy; if(isElectron) tmax *= 0.5; if(maxEnergy < tmax) tmax = maxEnergy; if(tmin >= tmax) return; G4double energy = kineticEnergy + electron_mass_c2; G4double totalMomentum = sqrt(kineticEnergy*(energy + electron_mass_c2)); G4double xmin = tmin/kineticEnergy; G4double xmax = tmax/kineticEnergy; G4double gam = energy/electron_mass_c2; G4double gamma2 = gam*gam; G4double beta2 = 1.0 - 1.0/gamma2; G4double x, z, q, grej; G4ThreeVector direction = dp->GetMomentumDirection(); //Moller (e-e-) scattering if (isElectron) { G4double g = (2.0*gam - 1.0)/gamma2; G4double y = 1.0 - xmax; grej = 1.0 - g*xmax + xmax*xmax*(1.0 - g + (1.0 - g*y)/(y*y)); do { q = G4UniformRand(); x = xmin*xmax/(xmin*(1.0 - q) + xmax*q); y = 1.0 - x; z = 1.0 - g*x + x*x*(1.0 - g + (1.0 - g*y)/(y*y)); /* if(z > grej) { G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " << "Majorant " << grej << " < " << z << " for x= " << x << " e-e- scattering" << G4endl; } */ } while(grej * G4UniformRand() > z); //Bhabha (e+e-) scattering } else { G4double y = 1.0/(1.0 + gam); G4double y2 = y*y; G4double y12 = 1.0 - 2.0*y; G4double b1 = 2.0 - y2; G4double b2 = y12*(3.0 + y2); G4double y122= y12*y12; G4double b4 = y122*y12; G4double b3 = b4 + y122; y = xmax*xmax; grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + y*b2 - xmin*b1)*beta2; do { q = G4UniformRand(); x = xmin*xmax/(xmin*(1.0 - q) + xmax*q); y = x*x; z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1)*beta2; /* if(z > grej) { G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " << "Majorant " << grej << " < " << z << " for x= " << x << " e+e- scattering" << G4endl; } */ } while(grej * G4UniformRand() > z); } G4double deltaKinEnergy = x * kineticEnergy; G4double deltaMomentum = sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); G4double cost = deltaKinEnergy * (energy + electron_mass_c2) / (deltaMomentum * totalMomentum); G4double sint = 1.0 - cost*cost; if(sint > 0.0) sint = sqrt(sint); G4double phi = twopi * G4UniformRand() ; G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost) ; deltaDirection.rotateUz(direction); // primary change kineticEnergy -= deltaKinEnergy; fParticleChange->SetProposedKineticEnergy(kineticEnergy); if(kineticEnergy > DBL_MIN) { G4ThreeVector dir = totalMomentum*direction - deltaMomentum*deltaDirection; direction = dir.unit(); fParticleChange->SetProposedMomentumDirection(direction); } // create G4DynamicParticle object for delta ray G4DynamicParticle* delta = new G4DynamicParticle(theElectron, deltaDirection,deltaKinEnergy); vdp->push_back(delta); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......