source: trunk/source/processes/electromagnetic/standard/src/G4PAIPhotonModel.cc @ 1315

Last change on this file since 1315 was 1315, checked in by garnier, 14 years ago

update geant4-09-04-beta-cand-01 interfaces-V09-03-09 vis-V09-03-08

File size: 42.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4PAIPhotonModel.cc,v 1.24 2010/06/03 07:28:39 grichine Exp $
27// GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class
32// File name:     G4PAIPhotonModel.cc
33//
34// Author: Vladimir.Grichine@cern.ch based on G4PAIModel class
35//
36// Creation date: 20.05.2004
37//
38// Modifications:
39//
40// 17.08.04 V.Grichine, bug fixed for Tkin<=0 in SampleSecondary
41// 16.08.04 V.Grichine, bug fixed in massRatio for DEDX, CrossSection, SampleSecondary
42// 11.04.05 Major optimisation of internal interfaces (V.Ivantchenko)
43//
44
45#include "G4Region.hh"
46#include "G4PhysicsLogVector.hh"
47#include "G4PhysicsFreeVector.hh"
48#include "G4PhysicsTable.hh"
49#include "G4ProductionCutsTable.hh"
50#include "G4MaterialCutsCouple.hh"
51#include "G4MaterialTable.hh"
52#include "G4SandiaTable.hh"
53#include "G4PAIxSection.hh"
54
55#include "G4PAIPhotonModel.hh"
56#include "Randomize.hh"
57#include "G4Electron.hh"
58#include "G4Positron.hh"
59#include "G4Gamma.hh"
60#include "G4Poisson.hh"
61#include "G4Step.hh"
62#include "G4Material.hh"
63#include "G4DynamicParticle.hh"
64#include "G4ParticleDefinition.hh"
65#include "G4ParticleChangeForLoss.hh"
66#include "G4GeometryTolerance.hh"
67
68////////////////////////////////////////////////////////////////////////
69
70using namespace std;
71
72G4PAIPhotonModel::G4PAIPhotonModel(const G4ParticleDefinition* p, const G4String& nam)
73  : G4VEmModel(nam),G4VEmFluctuationModel(nam),
74  fLowestKineticEnergy(10.0*keV),
75  fHighestKineticEnergy(100.*TeV),
76  fTotBin(200),
77  fMeanNumber(20),
78  fParticle(0),
79  fHighKinEnergy(100.*TeV),
80  fLowKinEnergy(2.0*MeV),
81  fTwoln10(2.0*log(10.0)),
82  fBg2lim(0.0169),
83  fTaulim(8.4146e-3)
84{
85  if(p) SetParticle(p);
86
87  fVerbose  = 0;
88  fElectron = G4Electron::Electron();
89  fPositron = G4Positron::Positron();
90
91  fProtonEnergyVector = new G4PhysicsLogVector(fLowestKineticEnergy,
92                                                           fHighestKineticEnergy,
93                                                           fTotBin);
94  fPAItransferTable     = 0;
95  fPAIphotonTable       = 0;
96  fPAIplasmonTable      = 0;
97
98  fPAIdEdxTable         = 0;
99  fSandiaPhotoAbsCof    = 0;
100  fdEdxVector           = 0;
101
102  fLambdaVector         = 0;
103  fdNdxCutVector        = 0;
104  fdNdxCutPhotonVector  = 0;
105  fdNdxCutPlasmonVector = 0;
106
107  isInitialised      = false;
108}
109
110////////////////////////////////////////////////////////////////////////////
111
112G4PAIPhotonModel::~G4PAIPhotonModel()
113{
114  if(fProtonEnergyVector) delete fProtonEnergyVector;
115  if(fdEdxVector)         delete fdEdxVector ;
116  if ( fLambdaVector)     delete fLambdaVector;
117  if ( fdNdxCutVector)    delete fdNdxCutVector;
118
119  if( fPAItransferTable )
120  {
121        fPAItransferTable->clearAndDestroy();
122        delete fPAItransferTable ;
123  }
124  if( fPAIphotonTable )
125  {
126        fPAIphotonTable->clearAndDestroy();
127        delete fPAIphotonTable ;
128  }
129  if( fPAIplasmonTable )
130  {
131        fPAIplasmonTable->clearAndDestroy();
132        delete fPAIplasmonTable ;
133  }
134  if(fSandiaPhotoAbsCof)
135  {
136    for(G4int i=0;i<fSandiaIntervalNumber;i++)
137    {
138        delete[] fSandiaPhotoAbsCof[i];
139    }
140    delete[] fSandiaPhotoAbsCof;
141  }
142}
143
144///////////////////////////////////////////////////////////////////////////////
145
146void G4PAIPhotonModel::SetParticle(const G4ParticleDefinition* p)
147{
148  fParticle = p;
149  fMass = fParticle->GetPDGMass();
150  fSpin = fParticle->GetPDGSpin();
151  G4double q = fParticle->GetPDGCharge()/eplus;
152  fChargeSquare = q*q;
153  fLowKinEnergy *= fMass/proton_mass_c2;
154  fRatio = electron_mass_c2/fMass;
155  fQc = fMass/fRatio;
156}
157
158////////////////////////////////////////////////////////////////////////////
159
160void G4PAIPhotonModel::Initialise(const G4ParticleDefinition* p,
161                                   const G4DataVector&)
162{
163  G4cout<<"G4PAIPhotonModel::Initialise for "<<p->GetParticleName()<<G4endl;
164  if(isInitialised) return;
165  isInitialised = true;
166
167  if(!fParticle) SetParticle(p);
168
169  fParticleChange = GetParticleChangeForLoss();
170
171  const G4ProductionCutsTable* theCoupleTable =
172        G4ProductionCutsTable::GetProductionCutsTable();
173
174  for(size_t iReg = 0; iReg < fPAIRegionVector.size();++iReg) // region loop
175  {
176    const G4Region* curReg = fPAIRegionVector[iReg];
177
178    vector<G4Material*>::const_iterator matIter = curReg->GetMaterialIterator();
179    size_t jMat; 
180    size_t numOfMat = curReg->GetNumberOfMaterials();
181
182    //  for(size_t jMat = 0; jMat < curReg->GetNumberOfMaterials();++jMat){}
183    const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
184    size_t numberOfMat = G4Material::GetNumberOfMaterials();
185
186    for(jMat = 0 ; jMat < numOfMat; ++jMat) // region material loop
187    {
188      const G4MaterialCutsCouple* matCouple = theCoupleTable->
189      GetMaterialCutsCouple( *matIter, curReg->GetProductionCuts() );
190      fMaterialCutsCoupleVector.push_back(matCouple);
191
192      size_t iMatGlob;
193      for(iMatGlob = 0 ; iMatGlob < numberOfMat ; iMatGlob++ )
194      {
195        if( *matIter == (*theMaterialTable)[iMatGlob]) break ;
196      }
197      fMatIndex = iMatGlob;
198
199      ComputeSandiaPhotoAbsCof();
200      BuildPAIonisationTable();
201
202      fPAIxscBank.push_back(fPAItransferTable);
203      fPAIphotonBank.push_back(fPAIphotonTable);
204      fPAIplasmonBank.push_back(fPAIplasmonTable);
205      fPAIdEdxBank.push_back(fPAIdEdxTable);
206      fdEdxTable.push_back(fdEdxVector);
207
208      BuildLambdaVector(matCouple);
209
210      fdNdxCutTable.push_back(fdNdxCutVector);
211      fdNdxCutPhotonTable.push_back(fdNdxCutPhotonVector);
212      fdNdxCutPlasmonTable.push_back(fdNdxCutPlasmonVector);
213      fLambdaTable.push_back(fLambdaVector);
214
215
216      matIter++;
217    }
218  }
219}
220
221//////////////////////////////////////////////////////////////////
222
223void G4PAIPhotonModel::InitialiseMe(const G4ParticleDefinition*)
224{}
225
226//////////////////////////////////////////////////////////////////
227
228void G4PAIPhotonModel::ComputeSandiaPhotoAbsCof()
229{
230  G4int i, j, numberOfElements ;
231  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
232
233  G4SandiaTable thisMaterialSandiaTable(fMatIndex) ;
234  numberOfElements = (*theMaterialTable)[fMatIndex]->
235                                              GetNumberOfElements();
236  G4int* thisMaterialZ = new G4int[numberOfElements] ;
237
238  for(i=0;i<numberOfElements;i++) 
239  {
240    thisMaterialZ[i] = 
241    (G4int)(*theMaterialTable)[fMatIndex]->GetElement(i)->GetZ() ;
242  } 
243  fSandiaIntervalNumber = thisMaterialSandiaTable.SandiaIntervals
244                           (thisMaterialZ,numberOfElements) ;
245
246  fSandiaIntervalNumber = thisMaterialSandiaTable.SandiaMixing
247                           ( thisMaterialZ ,
248                             (*theMaterialTable)[fMatIndex]->GetFractionVector() ,
249                             numberOfElements,fSandiaIntervalNumber) ;
250   
251  fSandiaPhotoAbsCof = new G4double*[fSandiaIntervalNumber] ;
252
253  for(i=0;i<fSandiaIntervalNumber;i++)  fSandiaPhotoAbsCof[i] = new G4double[5] ;
254   
255  for( i = 0 ; i < fSandiaIntervalNumber ; i++ )
256  {
257    fSandiaPhotoAbsCof[i][0] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i+1,0) ; 
258
259    for( j = 1; j < 5 ; j++ )
260    {
261      fSandiaPhotoAbsCof[i][j] = thisMaterialSandiaTable.
262                                      GetPhotoAbsorpCof(i+1,j)*
263                 (*theMaterialTable)[fMatIndex]->GetDensity() ;
264    }
265  }
266  // delete[] thisMaterialZ ;
267}
268
269////////////////////////////////////////////////////////////////////////////
270//
271// Build tables for the ionization energy loss
272//  the tables are built for MATERIALS
273//                           *********
274
275void
276G4PAIPhotonModel::BuildPAIonisationTable()
277{
278  G4double LowEdgeEnergy , ionloss ;
279  G4double massRatio, tau, Tmax, Tmin, Tkin, deltaLow, gamma, bg2 ;
280  /*
281  if( fPAItransferTable )
282  {
283     fPAItransferTable->clearAndDestroy() ;
284     delete fPAItransferTable ;
285  }
286  */
287  fPAItransferTable = new G4PhysicsTable(fTotBin);
288  /*
289  if( fPAIratioTable )
290  {
291     fPAIratioTable->clearAndDestroy() ;
292     delete fPAIratioTable ;
293  }
294  */
295  fPAIphotonTable = new G4PhysicsTable(fTotBin);
296  fPAIplasmonTable = new G4PhysicsTable(fTotBin);
297  /*
298  if( fPAIdEdxTable )
299  {
300     fPAIdEdxTable->clearAndDestroy() ;
301     delete fPAIdEdxTable ;
302  }
303  */
304  fPAIdEdxTable = new G4PhysicsTable(fTotBin);
305
306  //  if(fdEdxVector) delete fdEdxVector ;
307  fdEdxVector = new G4PhysicsLogVector( fLowestKineticEnergy,
308                                         fHighestKineticEnergy,
309                                         fTotBin               ) ;
310  Tmin     = fSandiaPhotoAbsCof[0][0] ;      // low energy Sandia interval
311  deltaLow = 100.*eV; // 0.5*eV ;
312
313  for (G4int i = 0 ; i <= fTotBin ; i++)  //The loop for the kinetic energy
314  {
315    LowEdgeEnergy = fProtonEnergyVector->GetLowEdgeEnergy(i) ;
316    tau = LowEdgeEnergy/proton_mass_c2 ;
317    //    if(tau < 0.01)  tau = 0.01 ;
318    gamma = tau +1. ;
319    // G4cout<<"gamma = "<<gamma<<endl ;
320    bg2 = tau*(tau + 2. ) ;
321    massRatio = electron_mass_c2/proton_mass_c2 ;
322    Tmax = MaxSecondaryEnergy(fParticle, LowEdgeEnergy); 
323    // G4cout<<"proton Tkin = "<<LowEdgeEnergy/MeV<<" MeV"
324    // <<" Tmax = "<<Tmax/MeV<<" MeV"<<G4endl;
325    // Tkin = DeltaCutInKineticEnergyNow ;
326
327    // if ( DeltaCutInKineticEnergyNow > Tmax)         // was <
328    Tkin = Tmax ;
329    if ( Tkin < Tmin + deltaLow )  // low energy safety
330    {
331      Tkin = Tmin + deltaLow ;
332    }
333    G4PAIxSection protonPAI( fMatIndex,
334                             Tkin,
335                             bg2,
336                             fSandiaPhotoAbsCof,
337                             fSandiaIntervalNumber  ) ;
338
339
340    // G4cout<<"ionloss = "<<ionloss*cm/keV<<" keV/cm"<<endl ;
341    // G4cout<<"n1 = "<<protonPAI.GetIntegralPAIxSection(1)*cm<<" 1/cm"<<endl ;
342    // G4cout<<"protonPAI.GetSplineSize() = "<<
343    //    protonPAI.GetSplineSize()<<G4endl<<G4endl ;
344
345    G4PhysicsFreeVector* transferVector = new
346                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
347    G4PhysicsFreeVector* photonVector = new
348                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
349    G4PhysicsFreeVector* plasmonVector = new
350                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
351    G4PhysicsFreeVector* dEdxVector = new
352                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
353
354    for( G4int k = 0 ; k < protonPAI.GetSplineSize() ; k++ )
355    {
356      transferVector->PutValue( k ,
357                                protonPAI.GetSplineEnergy(k+1),
358                                protonPAI.GetIntegralPAIxSection(k+1) ) ;
359      photonVector->PutValue( k ,
360                                protonPAI.GetSplineEnergy(k+1),
361                                protonPAI.GetIntegralCerenkov(k+1) ) ;
362      plasmonVector->PutValue( k ,
363                                protonPAI.GetSplineEnergy(k+1),
364                                protonPAI.GetIntegralPlasmon(k+1) ) ;
365      dEdxVector->PutValue( k ,
366                                protonPAI.GetSplineEnergy(k+1),
367                                protonPAI.GetIntegralPAIdEdx(k+1) ) ;
368    }
369    ionloss = protonPAI.GetMeanEnergyLoss() ;   //  total <dE/dx>
370    if ( ionloss <= 0.)  ionloss = DBL_MIN ;
371    fdEdxVector->PutValue(i,ionloss) ;
372
373    fPAItransferTable->insertAt(i,transferVector) ;
374    fPAIphotonTable->insertAt(i,photonVector) ;
375    fPAIplasmonTable->insertAt(i,plasmonVector) ;
376    fPAIdEdxTable->insertAt(i,dEdxVector) ;
377
378  }                                        // end of Tkin loop
379  //  theLossTable->insert(fdEdxVector);
380  // end of material loop
381  // G4cout<<"G4PAIonisation::BuildPAIonisationTable() have been called"<<G4endl ;
382  // G4cout<<"G4PAIonisation::BuildLossTable() have been called"<<G4endl ;
383}
384
385///////////////////////////////////////////////////////////////////////
386//
387// Build mean free path tables for the delta ray production process
388//     tables are built for MATERIALS
389//
390
391void
392G4PAIPhotonModel::BuildLambdaVector(const G4MaterialCutsCouple* matCutsCouple)
393{
394  G4int i ;
395  G4double dNdxCut,dNdxPhotonCut,dNdxPlasmonCut, lambda;
396  G4double kCarTolerance = G4GeometryTolerance::GetInstance()
397                           ->GetSurfaceTolerance();
398
399  const G4ProductionCutsTable* theCoupleTable=
400        G4ProductionCutsTable::GetProductionCutsTable();
401
402  size_t numOfCouples = theCoupleTable->GetTableSize();
403  size_t jMatCC;
404
405  for (jMatCC = 0 ; jMatCC < numOfCouples ; jMatCC++ )
406  {
407    if( matCutsCouple == theCoupleTable->GetMaterialCutsCouple(jMatCC) ) break;
408  }
409  if( jMatCC == numOfCouples && jMatCC > 0 ) jMatCC--;
410
411  const vector<G4double>*  deltaCutInKineticEnergy = theCoupleTable->
412                                GetEnergyCutsVector(idxG4ElectronCut);
413  const vector<G4double>*  photonCutInKineticEnergy = theCoupleTable->
414                                GetEnergyCutsVector(idxG4GammaCut);
415
416  if (fLambdaVector)         delete fLambdaVector;
417  if (fdNdxCutVector)        delete fdNdxCutVector;
418  if (fdNdxCutPhotonVector)  delete fdNdxCutPhotonVector;
419  if (fdNdxCutPlasmonVector) delete fdNdxCutPlasmonVector;
420
421  fLambdaVector = new G4PhysicsLogVector( fLowestKineticEnergy,
422                                          fHighestKineticEnergy,
423                                          fTotBin                );
424  fdNdxCutVector = new G4PhysicsLogVector( fLowestKineticEnergy,
425                                          fHighestKineticEnergy,
426                                          fTotBin                );
427  fdNdxCutPhotonVector = new G4PhysicsLogVector( fLowestKineticEnergy,
428                                          fHighestKineticEnergy,
429                                          fTotBin                );
430  fdNdxCutPlasmonVector = new G4PhysicsLogVector( fLowestKineticEnergy,
431                                          fHighestKineticEnergy,
432                                          fTotBin                );
433
434  G4double deltaCutInKineticEnergyNow  = (*deltaCutInKineticEnergy)[jMatCC];
435  G4double photonCutInKineticEnergyNow = (*photonCutInKineticEnergy)[jMatCC];
436
437  if(fVerbose > 0)
438  {
439    G4cout<<"PAIPhotonModel deltaCutInKineticEnergyNow = "
440          <<deltaCutInKineticEnergyNow/keV<<" keV"<<G4endl;
441    G4cout<<"PAIPhotonModel photonCutInKineticEnergyNow = "
442          <<photonCutInKineticEnergyNow/keV<<" keV"<<G4endl;
443  }
444  for ( i = 0 ; i <= fTotBin ; i++ )
445  {
446    dNdxPhotonCut  = GetdNdxPhotonCut(i,photonCutInKineticEnergyNow);
447    dNdxPlasmonCut = GetdNdxPlasmonCut(i,deltaCutInKineticEnergyNow);
448
449    dNdxCut        =  dNdxPhotonCut + dNdxPlasmonCut;
450    lambda         = dNdxCut <= DBL_MIN ? DBL_MAX: 1.0/dNdxCut;
451
452    if (lambda <= 1000*kCarTolerance) lambda = 1000*kCarTolerance; // Mmm ???
453
454    fLambdaVector->PutValue(i, lambda);
455
456    fdNdxCutVector->PutValue(i, dNdxCut);
457    fdNdxCutPhotonVector->PutValue(i, dNdxPhotonCut);
458    fdNdxCutPlasmonVector->PutValue(i, dNdxPlasmonCut);
459  }
460}
461
462///////////////////////////////////////////////////////////////////////
463//
464// Returns integral PAI cross section for energy transfers >= transferCut
465
466G4double 
467G4PAIPhotonModel::GetdNdxCut( G4int iPlace, G4double transferCut)
468{ 
469  G4int iTransfer;
470  G4double x1, x2, y1, y2, dNdxCut;
471  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
472  // G4cout<<"size = "<<G4int((*fPAItransferTable)(iPlace)->GetVectorLength())
473  //           <<G4endl; 
474  for( iTransfer = 0 ; 
475       iTransfer < G4int((*fPAItransferTable)(iPlace)->GetVectorLength()) ; 
476       iTransfer++)
477  {
478    if(transferCut <= (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
479    {
480      break ;
481    }
482  } 
483  if ( iTransfer >= G4int((*fPAItransferTable)(iPlace)->GetVectorLength()) )
484  {
485      iTransfer = (*fPAItransferTable)(iPlace)->GetVectorLength() - 1 ;
486  }
487  y1 = (*(*fPAItransferTable)(iPlace))(iTransfer-1) ;
488  y2 = (*(*fPAItransferTable)(iPlace))(iTransfer) ;
489  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
490  x1 = (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
491  x2 = (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
492  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
493
494  if ( y1 == y2 )    dNdxCut = y2 ;
495  else
496  {
497    //  if ( x1 == x2  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
498    //    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
499    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*0.5 ;
500    else             dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
501  }
502  //  G4cout<<""<<dNdxCut<<G4endl;
503  return dNdxCut ;
504}
505
506///////////////////////////////////////////////////////////////////////
507//
508// Returns integral PAI cherenkovcross section for energy transfers >= transferCut
509
510G4double 
511G4PAIPhotonModel::GetdNdxPhotonCut( G4int iPlace, G4double transferCut)
512{ 
513  G4int iTransfer;
514  G4double x1, x2, y1, y2, dNdxCut;
515  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
516  // G4cout<<"size = "<<G4int((*fPAIphotonTable)(iPlace)->GetVectorLength())
517  //           <<G4endl; 
518  for( iTransfer = 0 ; 
519       iTransfer < G4int((*fPAIphotonTable)(iPlace)->GetVectorLength()) ; 
520       iTransfer++)
521  {
522    if(transferCut <= (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
523    {
524      break ;
525    }
526  } 
527  if ( iTransfer >= G4int((*fPAIphotonTable)(iPlace)->GetVectorLength()) )
528  {
529      iTransfer = (*fPAIphotonTable)(iPlace)->GetVectorLength() - 1 ;
530  }
531  y1 = (*(*fPAIphotonTable)(iPlace))(iTransfer-1) ;
532  y2 = (*(*fPAIphotonTable)(iPlace))(iTransfer) ;
533  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
534  x1 = (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
535  x2 = (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
536  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
537
538  if ( y1 == y2 )    dNdxCut = y2 ;
539  else
540  {
541    //  if ( x1 == x2  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
542    //    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
543    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*0.5 ;
544    else             dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
545  }
546  //  G4cout<<""<<dNdxPhotonCut<<G4endl;
547  return dNdxCut ;
548}
549
550///////////////////////////////////////////////////////////////////////
551//
552// Returns integral PAI cross section for energy transfers >= transferCut
553
554G4double 
555G4PAIPhotonModel::GetdNdxPlasmonCut( G4int iPlace, G4double transferCut)
556{ 
557  G4int iTransfer;
558  G4double x1, x2, y1, y2, dNdxCut;
559
560  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
561  // G4cout<<"size = "<<G4int((*fPAIPlasmonTable)(iPlace)->GetVectorLength())
562  //           <<G4endl; 
563  for( iTransfer = 0 ; 
564       iTransfer < G4int((*fPAIplasmonTable)(iPlace)->GetVectorLength()) ; 
565       iTransfer++)
566  {
567    if(transferCut <= (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
568    {
569      break ;
570    }
571  } 
572  if ( iTransfer >= G4int((*fPAIplasmonTable)(iPlace)->GetVectorLength()) )
573  {
574      iTransfer = (*fPAIplasmonTable)(iPlace)->GetVectorLength() - 1 ;
575  }
576  y1 = (*(*fPAIplasmonTable)(iPlace))(iTransfer-1) ;
577  y2 = (*(*fPAIplasmonTable)(iPlace))(iTransfer) ;
578  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
579  x1 = (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
580  x2 = (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
581  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
582
583  if ( y1 == y2 )    dNdxCut = y2 ;
584  else
585  {
586    //  if ( x1 == x2  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
587    //    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
588    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*0.5 ;
589    else             dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
590  }
591  //  G4cout<<""<<dNdxPlasmonCut<<G4endl;
592  return dNdxCut ;
593}
594
595///////////////////////////////////////////////////////////////////////
596//
597// Returns integral dEdx for energy transfers >= transferCut
598
599G4double 
600G4PAIPhotonModel::GetdEdxCut( G4int iPlace, G4double transferCut)
601{ 
602  G4int iTransfer;
603  G4double x1, x2, y1, y2, dEdxCut;
604  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
605  // G4cout<<"size = "<<G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength())
606  //           <<G4endl; 
607  for( iTransfer = 0 ; 
608       iTransfer < G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength()) ; 
609       iTransfer++)
610  {
611    if(transferCut <= (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
612    {
613      break ;
614    }
615  } 
616  if ( iTransfer >= G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength()) )
617  {
618      iTransfer = (*fPAIdEdxTable)(iPlace)->GetVectorLength() - 1 ;
619  }
620  y1 = (*(*fPAIdEdxTable)(iPlace))(iTransfer-1) ;
621  y2 = (*(*fPAIdEdxTable)(iPlace))(iTransfer) ;
622  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
623  x1 = (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
624  x2 = (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
625  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
626
627  if ( y1 == y2 )    dEdxCut = y2 ;
628  else
629  {
630    //  if ( x1 == x2  ) dEdxCut = y1 + (y2 - y1)*G4UniformRand() ;
631    //    if ( std::abs(x1-x2) <= eV  ) dEdxCut = y1 + (y2 - y1)*G4UniformRand() ;
632    if ( std::abs(x1-x2) <= eV  ) dEdxCut = y1 + (y2 - y1)*0.5 ;
633    else             dEdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
634  }
635  //  G4cout<<""<<dEdxCut<<G4endl;
636  return dEdxCut ;
637}
638
639//////////////////////////////////////////////////////////////////////////////
640
641G4double G4PAIPhotonModel::ComputeDEDXPerVolume(const G4Material*,
642                                                const G4ParticleDefinition* p,
643                                                G4double kineticEnergy,
644                                                G4double cutEnergy)
645{
646  G4int iTkin,iPlace;
647  size_t jMat;
648
649  //G4double cut = std::min(MaxSecondaryEnergy(p, kineticEnergy), cutEnergy);
650  G4double cut = cutEnergy;
651
652  G4double particleMass = p->GetPDGMass();
653  G4double scaledTkin   = kineticEnergy*proton_mass_c2/particleMass;
654  G4double charge       = p->GetPDGCharge()/eplus;
655  G4double charge2      = charge*charge;
656  G4double dEdx         = 0.;
657  const G4MaterialCutsCouple* matCC = CurrentCouple();
658
659  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
660  {
661    if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
662  }
663  if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
664
665  fPAIdEdxTable = fPAIdEdxBank[jMat];
666  fdEdxVector = fdEdxTable[jMat];
667  for(iTkin = 0 ; iTkin <= fTotBin ; iTkin++)
668  {
669    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;   
670  }
671  iPlace = iTkin - 1;
672  if(iPlace < 0) iPlace = 0;
673  dEdx = charge2*( (*fdEdxVector)(iPlace) - GetdEdxCut(iPlace,cut) ) ; 
674
675  if( dEdx < 0.) dEdx = 0.;
676  return dEdx;
677}
678
679/////////////////////////////////////////////////////////////////////////
680
681G4double G4PAIPhotonModel::CrossSectionPerVolume( const G4Material*,
682                                                  const G4ParticleDefinition* p,
683                                                  G4double kineticEnergy,
684                                                  G4double cutEnergy,
685                                                  G4double maxEnergy  ) 
686{
687  G4int iTkin,iPlace;
688  size_t jMat, jMatCC;
689  G4double tmax = std::min(MaxSecondaryEnergy(p, kineticEnergy), maxEnergy);
690  if(cutEnergy >= tmax) return 0.0;
691  G4double particleMass = p->GetPDGMass();
692  G4double scaledTkin   = kineticEnergy*proton_mass_c2/particleMass;
693  G4double charge       = p->GetPDGCharge();
694  G4double charge2      = charge*charge, cross, cross1, cross2;
695  G4double photon1, photon2, plasmon1, plasmon2;
696
697  const G4MaterialCutsCouple* matCC = CurrentCouple();
698
699  const G4ProductionCutsTable* theCoupleTable=
700        G4ProductionCutsTable::GetProductionCutsTable();
701
702  size_t numOfCouples = theCoupleTable->GetTableSize();
703
704  for (jMatCC = 0 ; jMatCC < numOfCouples ; jMatCC++ )
705  {
706    if( matCC == theCoupleTable->GetMaterialCutsCouple(jMatCC) ) break;
707  }
708  if( jMatCC == numOfCouples && jMatCC > 0 ) jMatCC--;
709
710  const vector<G4double>*  photonCutInKineticEnergy = theCoupleTable->
711                                GetEnergyCutsVector(idxG4GammaCut);
712
713  G4double photonCut = (*photonCutInKineticEnergy)[jMatCC] ;
714
715  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
716  {
717    if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
718  }
719  if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
720
721  fPAItransferTable = fPAIxscBank[jMat];
722  fPAIphotonTable   = fPAIphotonBank[jMat];
723  fPAIplasmonTable  = fPAIplasmonBank[jMat];
724
725  for(iTkin = 0 ; iTkin <= fTotBin ; iTkin++)
726  {
727    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;   
728  }
729  iPlace = iTkin - 1;
730  if(iPlace < 0) iPlace = 0;
731
732  // G4cout<<"iPlace = "<<iPlace<<"; tmax = "
733  // <<tmax<<"; cutEnergy = "<<cutEnergy<<G4endl; 
734  photon1 = GetdNdxPhotonCut(iPlace,tmax); 
735  photon2 = GetdNdxPhotonCut(iPlace,photonCut); 
736 
737  plasmon1 = GetdNdxPlasmonCut(iPlace,tmax); 
738  plasmon2 = GetdNdxPlasmonCut(iPlace,cutEnergy); 
739 
740  cross1 = photon1 + plasmon1;   
741  // G4cout<<"cross1 = "<<cross1<<G4endl; 
742  cross2 = photon2 + plasmon2;   
743  // G4cout<<"cross2 = "<<cross2<<G4endl; 
744  cross  = (cross2 - cross1)*charge2;
745  // G4cout<<"cross = "<<cross<<G4endl; 
746
747  if( cross < 0. ) cross = 0.;
748  return cross;
749}
750
751///////////////////////////////////////////////////////////////////////////
752//
753// It is analog of PostStepDoIt in terms of secondary electron or photon to
754// be returned as G4Dynamicparticle*.
755//
756
757void G4PAIPhotonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
758                                         const G4MaterialCutsCouple* matCC,
759                                         const G4DynamicParticle* dp,
760                                         G4double tmin,
761                                         G4double maxEnergy)
762{
763  size_t jMat;
764  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
765  {
766    if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
767  }
768  if( jMat == fMaterialCutsCoupleVector.size() && jMat > 0 ) jMat--;
769
770  fPAItransferTable = fPAIxscBank[jMat];
771  fPAIphotonTable   = fPAIphotonBank[jMat];
772  fPAIplasmonTable  = fPAIplasmonBank[jMat];
773
774  fdNdxCutVector        = fdNdxCutTable[jMat];
775  fdNdxCutPhotonVector  = fdNdxCutPhotonTable[jMat];
776  fdNdxCutPlasmonVector = fdNdxCutPlasmonTable[jMat];
777
778  G4double tmax = min(MaxSecondaryKinEnergy(dp), maxEnergy);
779  if( tmin >= tmax && fVerbose > 0) 
780  {
781    G4cout<<"G4PAIPhotonModel::SampleSecondary: tmin >= tmax "<<G4endl;
782  }
783
784  G4ThreeVector direction = dp->GetMomentumDirection();
785  G4double particleMass  = dp->GetMass();
786  G4double kineticEnergy = dp->GetKineticEnergy();
787  G4double scaledTkin    = kineticEnergy*fMass/particleMass;
788  G4double totalEnergy   = kineticEnergy + particleMass;
789  G4double pSquare       = kineticEnergy*(totalEnergy+particleMass);
790
791  G4int iTkin;
792  for(iTkin=0;iTkin<=fTotBin;iTkin++)
793  {
794    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin))  break ;
795  }
796  G4int iPlace = iTkin - 1 ;
797  if(iPlace < 0) iPlace = 0;
798
799  G4double dNdxPhotonCut  = (*fdNdxCutPhotonVector)(iPlace) ; 
800  G4double dNdxPlasmonCut = (*fdNdxCutPlasmonVector)(iPlace) ; 
801  G4double dNdxCut        = dNdxPhotonCut  + dNdxPlasmonCut;
802 
803  G4double ratio;
804  if (dNdxCut > 0.) ratio = dNdxPhotonCut/dNdxCut;
805  else              ratio = 0.;
806
807  if(ratio < G4UniformRand() ) // secondary e-
808  {
809    G4double deltaTkin     = GetPostStepTransfer(fPAIplasmonTable, fdNdxCutPlasmonVector,
810                                                 iPlace, scaledTkin);
811
812//  G4cout<<"PAIPhotonModel PlasmonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl ;
813 
814    if( deltaTkin <= 0. ) 
815    {
816      G4cout<<"G4PAIPhotonModel::SampleSecondary e- deltaTkin = "<<deltaTkin<<G4endl;
817    }
818    if( deltaTkin <= 0.) return;
819
820    G4double deltaTotalMomentum = sqrt(deltaTkin*(deltaTkin + 2. * electron_mass_c2 ));
821    G4double totalMomentum      = sqrt(pSquare);
822    G4double costheta           = deltaTkin*(totalEnergy + electron_mass_c2)
823                                /(deltaTotalMomentum * totalMomentum);
824
825    if( costheta > 0.99999 ) costheta = 0.99999;
826    G4double sintheta = 0.0;
827    G4double sin2 = 1. - costheta*costheta;
828    if( sin2 > 0.) sintheta = sqrt(sin2);
829
830    //  direction of the delta electron
831 
832    G4double phi = twopi*G4UniformRand(); 
833    G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
834
835    G4ThreeVector deltaDirection(dirx,diry,dirz);
836    deltaDirection.rotateUz(direction);
837
838    // primary change
839
840    kineticEnergy -= deltaTkin;
841    G4ThreeVector dir = totalMomentum*direction - deltaTotalMomentum*deltaDirection;
842    direction = dir.unit();
843    fParticleChange->SetProposedMomentumDirection(direction);
844
845    // create G4DynamicParticle object for e- delta ray
846 
847    G4DynamicParticle* deltaRay = new G4DynamicParticle;
848    deltaRay->SetDefinition(G4Electron::Electron());
849    deltaRay->SetKineticEnergy( deltaTkin );
850    deltaRay->SetMomentumDirection(deltaDirection); 
851    vdp->push_back(deltaRay);
852
853  }
854  else    // secondary 'Cherenkov' photon
855  { 
856    G4double deltaTkin     = GetPostStepTransfer(fPAIphotonTable, fdNdxCutPhotonVector,
857                                                 iPlace,scaledTkin);
858
859    //  G4cout<<"PAIPhotonModel PhotonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl ;
860
861    if( deltaTkin <= 0. )
862    {
863      G4cout<<"G4PAIPhotonModel::SampleSecondary gamma deltaTkin = "<<deltaTkin<<G4endl;
864    }
865    if( deltaTkin <= 0.) return;
866
867    G4double costheta = 0.; // G4UniformRand(); // VG: ??? for start only
868    G4double sintheta = sqrt((1.+costheta)*(1.-costheta));
869
870    //  direction of the 'Cherenkov' photon 
871    G4double phi = twopi*G4UniformRand(); 
872    G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
873
874    G4ThreeVector deltaDirection(dirx,diry,dirz);
875    deltaDirection.rotateUz(direction);
876
877    // primary change
878    kineticEnergy -= deltaTkin;
879
880    // create G4DynamicParticle object for photon ray
881 
882    G4DynamicParticle* photonRay = new G4DynamicParticle;
883    photonRay->SetDefinition( G4Gamma::Gamma() );
884    photonRay->SetKineticEnergy( deltaTkin );
885    photonRay->SetMomentumDirection(deltaDirection); 
886
887    vdp->push_back(photonRay);
888  }
889
890  fParticleChange->SetProposedKineticEnergy(kineticEnergy);
891}
892
893
894///////////////////////////////////////////////////////////////////////
895//
896// Returns post step PAI energy transfer > cut electron/photon energy according to passed
897// scaled kinetic energy of particle
898
899G4double 
900G4PAIPhotonModel::GetPostStepTransfer( G4PhysicsTable* pTable,
901                                       G4PhysicsLogVector* pVector,
902                                       G4int iPlace, G4double scaledTkin )
903{ 
904  // G4cout<<"G4PAIPhotonModel::GetPostStepTransfer"<<G4endl ;
905
906  G4int iTkin = iPlace+1, iTransfer;
907  G4double transfer = 0.0, position, dNdxCut1, dNdxCut2, E1, E2, W1, W2, W ;
908
909  dNdxCut1 = (*pVector)(iPlace) ; 
910
911  //  G4cout<<"iPlace = "<<iPlace<<endl ;
912
913  if(iTkin == fTotBin) // Fermi plato, try from left
914  {
915      position = dNdxCut1*G4UniformRand() ;
916
917      for( iTransfer = 0;
918 iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
919      {
920        if(position >= (*(*pTable)(iPlace))(iTransfer)) break ;
921      }
922      transfer = GetEnergyTransfer(pTable,iPlace,position,iTransfer);
923  }
924  else
925  {
926    dNdxCut2 = (*pVector)(iPlace+1) ; 
927    if(iTkin == 0) // Tkin is too small, trying from right only
928    {
929      position = dNdxCut2*G4UniformRand() ;
930
931      for( iTransfer = 0;
932  iTransfer < G4int((*pTable)(iPlace+1)->GetVectorLength()); iTransfer++ )
933      {
934        if(position >= (*(*pTable)(iPlace+1))(iTransfer)) break ;
935      }
936      transfer = GetEnergyTransfer(pTable,iPlace+1,position,iTransfer);
937    } 
938    else // general case: Tkin between two vectors of the material
939    {
940      E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 
941      E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin)     ;
942      W  = 1.0/(E2 - E1) ;
943      W1 = (E2 - scaledTkin)*W ;
944      W2 = (scaledTkin - E1)*W ;
945
946      position = ( dNdxCut1*W1 + dNdxCut2*W2 )*G4UniformRand() ;
947
948        // G4cout<<position<<"\t" ;
949
950      G4int iTrMax1, iTrMax2, iTrMax;
951
952      iTrMax1 = G4int((*pTable)(iPlace)->GetVectorLength());
953      iTrMax2 = G4int((*pTable)(iPlace+1)->GetVectorLength());
954
955      if (iTrMax1 >= iTrMax2) iTrMax = iTrMax2;
956      else                    iTrMax = iTrMax1;
957
958      for( iTransfer = 0; iTransfer < iTrMax; iTransfer++ )
959      {
960          if( position >=
961          ( (*(*pTable)(iPlace))(iTransfer)*W1 +
962            (*(*pTable)(iPlace+1))(iTransfer)*W2) ) break ;
963      }
964      transfer = GetEnergyTransfer(pTable, iPlace, position, iTransfer);
965    }
966  } 
967  //  G4cout<<"PAIPhotonModel PostStepTransfer = "<<transfer/keV<<" keV"<<G4endl ;
968  if(transfer < 0.0 ) transfer = 0.0 ;
969  return transfer ;
970}
971
972///////////////////////////////////////////////////////////////////////
973//
974// Returns random PAI energy transfer according to passed
975// indexes of particle
976
977G4double
978G4PAIPhotonModel::GetEnergyTransfer( G4PhysicsTable* pTable, G4int iPlace, 
979                                     G4double position, G4int iTransfer )
980{ 
981  G4int iTransferMax;
982  G4double x1, x2, y1, y2, energyTransfer;
983
984  if(iTransfer == 0)
985  {
986    energyTransfer = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
987  } 
988  else
989  {
990    iTransferMax = G4int((*pTable)(iPlace)->GetVectorLength());
991
992    if ( iTransfer >= iTransferMax)  iTransfer = iTransferMax - 1;
993   
994    y1 = (*(*pTable)(iPlace))(iTransfer-1);
995    y2 = (*(*fPAItransferTable)(iPlace))(iTransfer);
996
997    x1 = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1);
998    x2 = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
999
1000    if ( x1 == x2 )    energyTransfer = x2;
1001    else
1002    {
1003      if ( y1 == y2  ) energyTransfer = x1 + (x2 - x1)*G4UniformRand();
1004      else
1005      {
1006        energyTransfer = x1 + (position - y1)*(x2 - x1)/(y2 - y1);
1007      }
1008    }
1009  }
1010  return energyTransfer;
1011}
1012
1013///////////////////////////////////////////////////////////////////////
1014//
1015// Works like AlongStepDoIt method of process family
1016
1017
1018
1019
1020G4double G4PAIPhotonModel::SampleFluctuations( const G4Material* material,
1021                                         const G4DynamicParticle* aParticle,
1022                                               G4double&,
1023                                               G4double& step,
1024                                               G4double&)
1025{
1026  size_t jMat;
1027  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
1028  {
1029    if( material == fMaterialCutsCoupleVector[jMat]->GetMaterial() ) break;
1030  }
1031  if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
1032
1033  fPAItransferTable = fPAIxscBank[jMat];
1034  fPAIphotonTable = fPAIphotonBank[jMat];
1035  fPAIplasmonTable = fPAIplasmonBank[jMat];
1036
1037  fdNdxCutVector   = fdNdxCutTable[jMat];
1038  fdNdxCutPhotonVector   = fdNdxCutPhotonTable[jMat];
1039  fdNdxCutPlasmonVector   = fdNdxCutPlasmonTable[jMat];
1040
1041  G4int iTkin, iPlace  ;
1042
1043  // G4cout<<"G4PAIPhotonModel::SampleFluctuations"<<G4endl ;
1044
1045  G4double loss, photonLoss, plasmonLoss, charge2 ;
1046 
1047
1048  G4double Tkin       = aParticle->GetKineticEnergy() ;
1049  G4double MassRatio  = proton_mass_c2/aParticle->GetDefinition()->GetPDGMass() ;
1050  G4double charge     = aParticle->GetDefinition()->GetPDGCharge() ;
1051  charge2             = charge*charge ;
1052  G4double scaledTkin = Tkin*MassRatio ;
1053  G4double cof        = step*charge2;
1054
1055  for( iTkin = 0; iTkin <= fTotBin; iTkin++)
1056  {
1057    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin))   break ;
1058  }
1059  iPlace = iTkin - 1 ; 
1060  if( iPlace < 0 ) iPlace = 0;
1061
1062  photonLoss = GetAlongStepTransfer(fPAIphotonTable,fdNdxCutPhotonVector,
1063iPlace,scaledTkin,step,cof);
1064
1065  //  G4cout<<"PAIPhotonModel AlongStepPhotonLoss = "<<photonLoss/keV<<" keV"<<G4endl ;
1066
1067  plasmonLoss = GetAlongStepTransfer(fPAIplasmonTable,fdNdxCutPlasmonVector,
1068iPlace,scaledTkin,step,cof);
1069
1070  //  G4cout<<"PAIPhotonModel AlongStepPlasmonLoss = "<<plasmonLoss/keV<<" keV"<<G4endl ;
1071
1072  loss = photonLoss + plasmonLoss;
1073
1074  //  G4cout<<"PAIPhotonModel AlongStepLoss = "<<loss/keV<<" keV"<<G4endl ;
1075
1076  return loss;
1077}
1078
1079///////////////////////////////////////////////////////////////////////
1080//
1081// Returns along step PAI energy transfer < cut electron/photon energy according to passed
1082// scaled kinetic energy of particle and cof = step*charge*charge
1083
1084G4double 
1085G4PAIPhotonModel::GetAlongStepTransfer( G4PhysicsTable* pTable,
1086                                        G4PhysicsLogVector* pVector,
1087                                        G4int iPlace, G4double scaledTkin,G4double step,
1088                                        G4double cof )
1089{ 
1090  G4int iTkin = iPlace + 1, iTransfer;
1091  G4double loss = 0., position, E1, E2, W1, W2, W, dNdxCut1, dNdxCut2, meanNumber;
1092  G4double lambda, stepDelta, stepSum=0. ;
1093  G4long numOfCollisions=0;
1094  G4bool numb = true;
1095
1096  dNdxCut1 = (*pVector)(iPlace) ; 
1097
1098  //  G4cout<<"iPlace = "<<iPlace<<endl ;
1099
1100  if(iTkin == fTotBin) // Fermi plato, try from left
1101  {
1102    meanNumber = ((*(*pTable)(iPlace))(0) - dNdxCut1)*cof;
1103    if(meanNumber < 0.) meanNumber = 0. ;
1104    //  numOfCollisions = RandPoisson::shoot(meanNumber) ;
1105    if( meanNumber > 0.) lambda = step/meanNumber;
1106    else                 lambda = DBL_MAX;
1107    while(numb)
1108    {
1109      stepDelta = CLHEP::RandExponential::shoot(lambda);
1110      stepSum += stepDelta;
1111      if(stepSum >= step) break;
1112      numOfCollisions++;
1113    }   
1114   
1115    //     G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl ;
1116
1117    while(numOfCollisions)
1118    {
1119      position = dNdxCut1+
1120                 ((*(*pTable)(iPlace))(0) - dNdxCut1)*G4UniformRand() ;
1121
1122      for( iTransfer = 0;
1123   iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
1124      {
1125        if(position >= (*(*pTable)(iPlace))(iTransfer)) break ;
1126      }
1127      loss += GetEnergyTransfer(pTable,iPlace,position,iTransfer);
1128      numOfCollisions-- ;
1129    }
1130  }
1131  else
1132  {
1133    dNdxCut2 = (*pVector)(iPlace+1) ; 
1134 
1135    if(iTkin == 0) // Tkin is too small, trying from right only
1136    {
1137      meanNumber = ((*(*pTable)(iPlace+1))(0) - dNdxCut2)*cof;
1138      if( meanNumber < 0. ) meanNumber = 0. ;
1139      //  numOfCollisions = CLHEP::RandPoisson::shoot(meanNumber) ;
1140      if( meanNumber > 0.) lambda = step/meanNumber;
1141      else                 lambda = DBL_MAX;
1142      while(numb)
1143      {
1144        stepDelta = CLHEP::RandExponential::shoot(lambda);
1145        stepSum += stepDelta;
1146        if(stepSum >= step) break;
1147        numOfCollisions++;
1148      }   
1149
1150      //  G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl ;
1151
1152      while(numOfCollisions)
1153      {
1154        position = dNdxCut2+
1155                   ((*(*pTable)(iPlace+1))(0) - dNdxCut2)*G4UniformRand();
1156   
1157        for( iTransfer = 0;
1158   iTransfer < G4int((*pTable)(iPlace+1)->GetVectorLength()); iTransfer++ )
1159        {
1160          if(position >= (*(*pTable)(iPlace+1))(iTransfer)) break ;
1161        }
1162        loss += GetEnergyTransfer(pTable,iPlace+1,position,iTransfer);
1163        numOfCollisions-- ;
1164      }
1165    } 
1166    else // general case: Tkin between two vectors of the material
1167    {
1168      E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 
1169      E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin)     ;
1170       W = 1.0/(E2 - E1) ;
1171      W1 = (E2 - scaledTkin)*W ;
1172      W2 = (scaledTkin - E1)*W ;
1173
1174      // G4cout<<"(*(*pTable)(iPlace))(0) = "<<
1175      //   (*(*pTable)(iPlace))(0)<<G4endl ;
1176      // G4cout<<"(*(*pTable)(iPlace+1))(0) = "<<
1177      //     (*(*pTable)(iPlace+1))(0)<<G4endl ;
1178
1179      meanNumber=( ((*(*pTable)(iPlace))(0)-dNdxCut1)*W1 + 
1180                   ((*(*pTable)(iPlace+1))(0)-dNdxCut2)*W2 )*cof;
1181      if(meanNumber<0.0) meanNumber = 0.0;
1182      //  numOfCollisions = CLHEP::RandPoisson::shoot(meanNumber) ;
1183      if( meanNumber > 0.) lambda = step/meanNumber;
1184      else                 lambda = DBL_MAX;
1185      while(numb)
1186      {
1187        stepDelta = CLHEP::RandExponential::shoot(lambda);
1188        stepSum += stepDelta;
1189        if(stepSum >= step) break;
1190        numOfCollisions++;
1191      }   
1192
1193      //  G4cout<<"numOfCollisions = "<<numOfCollisions<<endl ;
1194
1195      while(numOfCollisions)
1196      {
1197        position = dNdxCut1*W1 + dNdxCut2*W2 +
1198                   ( ( (*(*pTable)(iPlace  ))(0) - dNdxCut1)*W1 + 
1199                   
1200                     ( (*(*pTable)(iPlace+1))(0) - dNdxCut2)*W2 )*G4UniformRand();
1201
1202        // G4cout<<position<<"\t" ;
1203
1204        for( iTransfer = 0;
1205    iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
1206        {
1207          if( position >=
1208          ( (*(*pTable)(iPlace))(iTransfer)*W1 + 
1209            (*(*pTable)(iPlace+1))(iTransfer)*W2) )
1210          {
1211              break ;
1212          }
1213        }
1214        // loss += (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
1215        loss += GetEnergyTransfer(pTable,iPlace,position,iTransfer);
1216        numOfCollisions-- ;   
1217      }
1218    }
1219  } 
1220
1221  return loss ;
1222
1223}
1224
1225//////////////////////////////////////////////////////////////////////
1226//
1227// Returns the statistical estimation of the energy loss distribution variance
1228//
1229
1230
1231G4double G4PAIPhotonModel::Dispersion( const G4Material* material, 
1232                                 const G4DynamicParticle* aParticle,
1233                                       G4double& tmax, 
1234                                       G4double& step       )
1235{
1236  G4double loss, sumLoss=0., sumLoss2=0., sigma2, meanLoss=0.;
1237  for(G4int i = 0 ; i < fMeanNumber; i++)
1238  {
1239    loss      = SampleFluctuations(material,aParticle,tmax,step,meanLoss);
1240    sumLoss  += loss;
1241    sumLoss2 += loss*loss;
1242  }
1243  meanLoss = sumLoss/fMeanNumber;
1244  sigma2   = meanLoss*meanLoss + (sumLoss2-2*sumLoss*meanLoss)/fMeanNumber;
1245  return sigma2;
1246}
1247
1248/////////////////////////////////////////////////////////////////////
1249
1250G4double G4PAIPhotonModel::MaxSecondaryEnergy( const G4ParticleDefinition* p,
1251                                                      G4double kinEnergy) 
1252{
1253  G4double tmax = kinEnergy;
1254  if(p == fElectron) tmax *= 0.5;
1255  else if(p != fPositron) { 
1256    G4double mass = p->GetPDGMass();
1257    G4double ratio= electron_mass_c2/mass;
1258    G4double gamma= kinEnergy/mass + 1.0;
1259    tmax = 2.0*electron_mass_c2*(gamma*gamma - 1.) /
1260                  (1. + 2.0*gamma*ratio + ratio*ratio);
1261  }
1262  return tmax;
1263}
1264
1265///////////////////////////////////////////////////////////////
1266
1267void G4PAIPhotonModel::DefineForRegion(const G4Region* r) 
1268{
1269  fPAIRegionVector.push_back(r);
1270}
1271
1272
1273//
1274//
1275/////////////////////////////////////////////////
1276
1277
1278
1279
1280
1281
Note: See TracBrowser for help on using the repository browser.