source: trunk/source/processes/electromagnetic/standard/src/G4PAIPhotonModel.cc@ 971

Last change on this file since 971 was 961, checked in by garnier, 17 years ago

update processes

File size: 42.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4PAIPhotonModel.cc,v 1.21 2009/02/19 19:17:50 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-02-ref-02 $
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class
32// File name: G4PAIPhotonModel.cc
33//
34// Author: Vladimir.Grichine@cern.ch based on G4PAIModel class
35//
36// Creation date: 20.05.2004
37//
38// Modifications:
39//
40// 17.08.04 V.Grichine, bug fixed for Tkin<=0 in SampleSecondary
41// 16.08.04 V.Grichine, bug fixed in massRatio for DEDX, CrossSection, SampleSecondary
42// 11.04.05 Major optimisation of internal interfaces (V.Ivantchenko)
43//
44
45#include "G4Region.hh"
46#include "G4PhysicsLogVector.hh"
47#include "G4PhysicsFreeVector.hh"
48#include "G4PhysicsTable.hh"
49#include "G4ProductionCutsTable.hh"
50#include "G4MaterialCutsCouple.hh"
51#include "G4MaterialTable.hh"
52#include "G4SandiaTable.hh"
53#include "G4PAIxSection.hh"
54
55#include "G4PAIPhotonModel.hh"
56#include "Randomize.hh"
57#include "G4Electron.hh"
58#include "G4Positron.hh"
59#include "G4Gamma.hh"
60#include "G4Poisson.hh"
61#include "G4Step.hh"
62#include "G4Material.hh"
63#include "G4DynamicParticle.hh"
64#include "G4ParticleDefinition.hh"
65#include "G4ParticleChangeForLoss.hh"
66#include "G4GeometryTolerance.hh"
67
68////////////////////////////////////////////////////////////////////////
69
70using namespace std;
71
72G4PAIPhotonModel::G4PAIPhotonModel(const G4ParticleDefinition* p, const G4String& nam)
73 : G4VEmModel(nam),G4VEmFluctuationModel(nam),
74 fLowestKineticEnergy(10.0*keV),
75 fHighestKineticEnergy(100.*TeV),
76 fTotBin(200),
77 fMeanNumber(20),
78 fParticle(0),
79 fHighKinEnergy(100.*TeV),
80 fLowKinEnergy(2.0*MeV),
81 fTwoln10(2.0*log(10.0)),
82 fBg2lim(0.0169),
83 fTaulim(8.4146e-3)
84{
85 if(p) SetParticle(p);
86
87 fVerbose = 0;
88 fElectron = G4Electron::Electron();
89 fPositron = G4Positron::Positron();
90
91 fProtonEnergyVector = new G4PhysicsLogVector(fLowestKineticEnergy,
92 fHighestKineticEnergy,
93 fTotBin);
94 fPAItransferTable = 0;
95 fPAIphotonTable = 0;
96 fPAIplasmonTable = 0;
97
98 fPAIdEdxTable = 0;
99 fSandiaPhotoAbsCof = 0;
100 fdEdxVector = 0;
101
102 fLambdaVector = 0;
103 fdNdxCutVector = 0;
104 fdNdxCutPhotonVector = 0;
105 fdNdxCutPlasmonVector = 0;
106
107 isInitialised = false;
108}
109
110////////////////////////////////////////////////////////////////////////////
111
112G4PAIPhotonModel::~G4PAIPhotonModel()
113{
114 if(fProtonEnergyVector) delete fProtonEnergyVector;
115 if(fdEdxVector) delete fdEdxVector ;
116 if ( fLambdaVector) delete fLambdaVector;
117 if ( fdNdxCutVector) delete fdNdxCutVector;
118
119 if( fPAItransferTable )
120 {
121 fPAItransferTable->clearAndDestroy();
122 delete fPAItransferTable ;
123 }
124 if( fPAIphotonTable )
125 {
126 fPAIphotonTable->clearAndDestroy();
127 delete fPAIphotonTable ;
128 }
129 if( fPAIplasmonTable )
130 {
131 fPAIplasmonTable->clearAndDestroy();
132 delete fPAIplasmonTable ;
133 }
134 if(fSandiaPhotoAbsCof)
135 {
136 for(G4int i=0;i<fSandiaIntervalNumber;i++)
137 {
138 delete[] fSandiaPhotoAbsCof[i];
139 }
140 delete[] fSandiaPhotoAbsCof;
141 }
142}
143
144///////////////////////////////////////////////////////////////////////////////
145
146void G4PAIPhotonModel::SetParticle(const G4ParticleDefinition* p)
147{
148 fParticle = p;
149 fMass = fParticle->GetPDGMass();
150 fSpin = fParticle->GetPDGSpin();
151 G4double q = fParticle->GetPDGCharge()/eplus;
152 fChargeSquare = q*q;
153 fLowKinEnergy *= fMass/proton_mass_c2;
154 fRatio = electron_mass_c2/fMass;
155 fQc = fMass/fRatio;
156}
157
158////////////////////////////////////////////////////////////////////////////
159
160void G4PAIPhotonModel::Initialise(const G4ParticleDefinition* p,
161 const G4DataVector&)
162{
163 if(isInitialised) return;
164 isInitialised = true;
165
166 if(!fParticle) SetParticle(p);
167
168 if(pParticleChange)
169 fParticleChange = reinterpret_cast<G4ParticleChangeForLoss*>(pParticleChange);
170 else
171 fParticleChange = new G4ParticleChangeForLoss();
172
173 const G4ProductionCutsTable* theCoupleTable =
174 G4ProductionCutsTable::GetProductionCutsTable();
175
176 for(size_t iReg = 0; iReg < fPAIRegionVector.size();++iReg) // region loop
177 {
178 const G4Region* curReg = fPAIRegionVector[iReg];
179
180 vector<G4Material*>::const_iterator matIter = curReg->GetMaterialIterator();
181 size_t jMat;
182 size_t numOfMat = curReg->GetNumberOfMaterials();
183
184 // for(size_t jMat = 0; jMat < curReg->GetNumberOfMaterials();++jMat){}
185 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
186 size_t numberOfMat = G4Material::GetNumberOfMaterials();
187
188 for(jMat = 0 ; jMat < numOfMat; ++jMat) // region material loop
189 {
190 const G4MaterialCutsCouple* matCouple = theCoupleTable->
191 GetMaterialCutsCouple( *matIter, curReg->GetProductionCuts() );
192 fMaterialCutsCoupleVector.push_back(matCouple);
193
194 size_t iMatGlob;
195 for(iMatGlob = 0 ; iMatGlob < numberOfMat ; iMatGlob++ )
196 {
197 if( *matIter == (*theMaterialTable)[iMatGlob]) break ;
198 }
199 fMatIndex = iMatGlob;
200
201 ComputeSandiaPhotoAbsCof();
202 BuildPAIonisationTable();
203
204 fPAIxscBank.push_back(fPAItransferTable);
205 fPAIphotonBank.push_back(fPAIphotonTable);
206 fPAIplasmonBank.push_back(fPAIplasmonTable);
207 fPAIdEdxBank.push_back(fPAIdEdxTable);
208 fdEdxTable.push_back(fdEdxVector);
209
210 BuildLambdaVector(matCouple);
211
212 fdNdxCutTable.push_back(fdNdxCutVector);
213 fdNdxCutPhotonTable.push_back(fdNdxCutPhotonVector);
214 fdNdxCutPlasmonTable.push_back(fdNdxCutPlasmonVector);
215 fLambdaTable.push_back(fLambdaVector);
216
217
218 matIter++;
219 }
220 }
221}
222
223//////////////////////////////////////////////////////////////////
224
225void G4PAIPhotonModel::InitialiseMe(const G4ParticleDefinition*)
226{}
227
228//////////////////////////////////////////////////////////////////
229
230void G4PAIPhotonModel::ComputeSandiaPhotoAbsCof()
231{
232 G4int i, j, numberOfElements ;
233 static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
234
235 G4SandiaTable thisMaterialSandiaTable(fMatIndex) ;
236 numberOfElements = (*theMaterialTable)[fMatIndex]->
237 GetNumberOfElements();
238 G4int* thisMaterialZ = new G4int[numberOfElements] ;
239
240 for(i=0;i<numberOfElements;i++)
241 {
242 thisMaterialZ[i] =
243 (G4int)(*theMaterialTable)[fMatIndex]->GetElement(i)->GetZ() ;
244 }
245 fSandiaIntervalNumber = thisMaterialSandiaTable.SandiaIntervals
246 (thisMaterialZ,numberOfElements) ;
247
248 fSandiaIntervalNumber = thisMaterialSandiaTable.SandiaMixing
249 ( thisMaterialZ ,
250 (*theMaterialTable)[fMatIndex]->GetFractionVector() ,
251 numberOfElements,fSandiaIntervalNumber) ;
252
253 fSandiaPhotoAbsCof = new G4double*[fSandiaIntervalNumber] ;
254
255 for(i=0;i<fSandiaIntervalNumber;i++) fSandiaPhotoAbsCof[i] = new G4double[5] ;
256
257 for( i = 0 ; i < fSandiaIntervalNumber ; i++ )
258 {
259 fSandiaPhotoAbsCof[i][0] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i+1,0) ;
260
261 for( j = 1; j < 5 ; j++ )
262 {
263 fSandiaPhotoAbsCof[i][j] = thisMaterialSandiaTable.
264 GetPhotoAbsorpCof(i+1,j)*
265 (*theMaterialTable)[fMatIndex]->GetDensity() ;
266 }
267 }
268 // delete[] thisMaterialZ ;
269}
270
271////////////////////////////////////////////////////////////////////////////
272//
273// Build tables for the ionization energy loss
274// the tables are built for MATERIALS
275// *********
276
277void
278G4PAIPhotonModel::BuildPAIonisationTable()
279{
280 G4double LowEdgeEnergy , ionloss ;
281 G4double massRatio, tau, Tmax, Tmin, Tkin, deltaLow, gamma, bg2 ;
282 /*
283 if( fPAItransferTable )
284 {
285 fPAItransferTable->clearAndDestroy() ;
286 delete fPAItransferTable ;
287 }
288 */
289 fPAItransferTable = new G4PhysicsTable(fTotBin);
290 /*
291 if( fPAIratioTable )
292 {
293 fPAIratioTable->clearAndDestroy() ;
294 delete fPAIratioTable ;
295 }
296 */
297 fPAIphotonTable = new G4PhysicsTable(fTotBin);
298 fPAIplasmonTable = new G4PhysicsTable(fTotBin);
299 /*
300 if( fPAIdEdxTable )
301 {
302 fPAIdEdxTable->clearAndDestroy() ;
303 delete fPAIdEdxTable ;
304 }
305 */
306 fPAIdEdxTable = new G4PhysicsTable(fTotBin);
307
308 // if(fdEdxVector) delete fdEdxVector ;
309 fdEdxVector = new G4PhysicsLogVector( fLowestKineticEnergy,
310 fHighestKineticEnergy,
311 fTotBin ) ;
312 Tmin = fSandiaPhotoAbsCof[0][0] ; // low energy Sandia interval
313 deltaLow = 100.*eV; // 0.5*eV ;
314
315 for (G4int i = 0 ; i < fTotBin ; i++) //The loop for the kinetic energy
316 {
317 LowEdgeEnergy = fProtonEnergyVector->GetLowEdgeEnergy(i) ;
318 tau = LowEdgeEnergy/proton_mass_c2 ;
319 // if(tau < 0.01) tau = 0.01 ;
320 gamma = tau +1. ;
321 // G4cout<<"gamma = "<<gamma<<endl ;
322 bg2 = tau*(tau + 2. ) ;
323 massRatio = electron_mass_c2/proton_mass_c2 ;
324 Tmax = MaxSecondaryEnergy(fParticle, LowEdgeEnergy);
325 // G4cout<<"proton Tkin = "<<LowEdgeEnergy/MeV<<" MeV"
326 // <<" Tmax = "<<Tmax/MeV<<" MeV"<<G4endl;
327 // Tkin = DeltaCutInKineticEnergyNow ;
328
329 // if ( DeltaCutInKineticEnergyNow > Tmax) // was <
330 Tkin = Tmax ;
331 if ( Tkin < Tmin + deltaLow ) // low energy safety
332 {
333 Tkin = Tmin + deltaLow ;
334 }
335 G4PAIxSection protonPAI( fMatIndex,
336 Tkin,
337 bg2,
338 fSandiaPhotoAbsCof,
339 fSandiaIntervalNumber ) ;
340
341
342 // G4cout<<"ionloss = "<<ionloss*cm/keV<<" keV/cm"<<endl ;
343 // G4cout<<"n1 = "<<protonPAI.GetIntegralPAIxSection(1)*cm<<" 1/cm"<<endl ;
344 // G4cout<<"protonPAI.GetSplineSize() = "<<
345 // protonPAI.GetSplineSize()<<G4endl<<G4endl ;
346
347 G4PhysicsFreeVector* transferVector = new
348 G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
349 G4PhysicsFreeVector* photonVector = new
350 G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
351 G4PhysicsFreeVector* plasmonVector = new
352 G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
353 G4PhysicsFreeVector* dEdxVector = new
354 G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
355
356 for( G4int k = 0 ; k < protonPAI.GetSplineSize() ; k++ )
357 {
358 transferVector->PutValue( k ,
359 protonPAI.GetSplineEnergy(k+1),
360 protonPAI.GetIntegralPAIxSection(k+1) ) ;
361 photonVector->PutValue( k ,
362 protonPAI.GetSplineEnergy(k+1),
363 protonPAI.GetIntegralCerenkov(k+1) ) ;
364 plasmonVector->PutValue( k ,
365 protonPAI.GetSplineEnergy(k+1),
366 protonPAI.GetIntegralPlasmon(k+1) ) ;
367 dEdxVector->PutValue( k ,
368 protonPAI.GetSplineEnergy(k+1),
369 protonPAI.GetIntegralPAIdEdx(k+1) ) ;
370 }
371 ionloss = protonPAI.GetMeanEnergyLoss() ; // total <dE/dx>
372 if ( ionloss <= 0.) ionloss = DBL_MIN ;
373 fdEdxVector->PutValue(i,ionloss) ;
374
375 fPAItransferTable->insertAt(i,transferVector) ;
376 fPAIphotonTable->insertAt(i,photonVector) ;
377 fPAIplasmonTable->insertAt(i,plasmonVector) ;
378 fPAIdEdxTable->insertAt(i,dEdxVector) ;
379
380 } // end of Tkin loop
381 // theLossTable->insert(fdEdxVector);
382 // end of material loop
383 // G4cout<<"G4PAIonisation::BuildPAIonisationTable() have been called"<<G4endl ;
384 // G4cout<<"G4PAIonisation::BuildLossTable() have been called"<<G4endl ;
385}
386
387///////////////////////////////////////////////////////////////////////
388//
389// Build mean free path tables for the delta ray production process
390// tables are built for MATERIALS
391//
392
393void
394G4PAIPhotonModel::BuildLambdaVector(const G4MaterialCutsCouple* matCutsCouple)
395{
396 G4int i ;
397 G4double dNdxCut,dNdxPhotonCut,dNdxPlasmonCut, lambda;
398 G4double kCarTolerance = G4GeometryTolerance::GetInstance()
399 ->GetSurfaceTolerance();
400
401 const G4ProductionCutsTable* theCoupleTable=
402 G4ProductionCutsTable::GetProductionCutsTable();
403
404 size_t numOfCouples = theCoupleTable->GetTableSize();
405 size_t jMatCC;
406
407 for (jMatCC = 0 ; jMatCC < numOfCouples ; jMatCC++ )
408 {
409 if( matCutsCouple == theCoupleTable->GetMaterialCutsCouple(jMatCC) ) break;
410 }
411 if( jMatCC == numOfCouples && jMatCC > 0 ) jMatCC--;
412
413 const vector<G4double>* deltaCutInKineticEnergy = theCoupleTable->
414 GetEnergyCutsVector(idxG4ElectronCut);
415 const vector<G4double>* photonCutInKineticEnergy = theCoupleTable->
416 GetEnergyCutsVector(idxG4GammaCut);
417
418 if (fLambdaVector) delete fLambdaVector;
419 if (fdNdxCutVector) delete fdNdxCutVector;
420 if (fdNdxCutPhotonVector) delete fdNdxCutPhotonVector;
421 if (fdNdxCutPlasmonVector) delete fdNdxCutPlasmonVector;
422
423 fLambdaVector = new G4PhysicsLogVector( fLowestKineticEnergy,
424 fHighestKineticEnergy,
425 fTotBin );
426 fdNdxCutVector = new G4PhysicsLogVector( fLowestKineticEnergy,
427 fHighestKineticEnergy,
428 fTotBin );
429 fdNdxCutPhotonVector = new G4PhysicsLogVector( fLowestKineticEnergy,
430 fHighestKineticEnergy,
431 fTotBin );
432 fdNdxCutPlasmonVector = new G4PhysicsLogVector( fLowestKineticEnergy,
433 fHighestKineticEnergy,
434 fTotBin );
435
436 G4double deltaCutInKineticEnergyNow = (*deltaCutInKineticEnergy)[jMatCC];
437 G4double photonCutInKineticEnergyNow = (*photonCutInKineticEnergy)[jMatCC];
438
439 if(fVerbose > 0)
440 {
441 G4cout<<"PAIPhotonModel deltaCutInKineticEnergyNow = "
442 <<deltaCutInKineticEnergyNow/keV<<" keV"<<G4endl;
443 G4cout<<"PAIPhotonModel photonCutInKineticEnergyNow = "
444 <<photonCutInKineticEnergyNow/keV<<" keV"<<G4endl;
445 }
446 for ( i = 0 ; i < fTotBin ; i++ )
447 {
448 dNdxPhotonCut = GetdNdxPhotonCut(i,photonCutInKineticEnergyNow);
449 dNdxPlasmonCut = GetdNdxPlasmonCut(i,deltaCutInKineticEnergyNow);
450
451 dNdxCut = dNdxPhotonCut + dNdxPlasmonCut;
452 lambda = dNdxCut <= DBL_MIN ? DBL_MAX: 1.0/dNdxCut;
453
454 if (lambda <= 1000*kCarTolerance) lambda = 1000*kCarTolerance; // Mmm ???
455
456 fLambdaVector->PutValue(i, lambda);
457
458 fdNdxCutVector->PutValue(i, dNdxCut);
459 fdNdxCutPhotonVector->PutValue(i, dNdxPhotonCut);
460 fdNdxCutPlasmonVector->PutValue(i, dNdxPlasmonCut);
461 }
462}
463
464///////////////////////////////////////////////////////////////////////
465//
466// Returns integral PAI cross section for energy transfers >= transferCut
467
468G4double
469G4PAIPhotonModel::GetdNdxCut( G4int iPlace, G4double transferCut)
470{
471 G4int iTransfer;
472 G4double x1, x2, y1, y2, dNdxCut;
473 // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
474 // G4cout<<"size = "<<G4int((*fPAItransferTable)(iPlace)->GetVectorLength())
475 // <<G4endl;
476 for( iTransfer = 0 ;
477 iTransfer < G4int((*fPAItransferTable)(iPlace)->GetVectorLength()) ;
478 iTransfer++)
479 {
480 if(transferCut <= (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
481 {
482 break ;
483 }
484 }
485 if ( iTransfer >= G4int((*fPAItransferTable)(iPlace)->GetVectorLength()) )
486 {
487 iTransfer = (*fPAItransferTable)(iPlace)->GetVectorLength() - 1 ;
488 }
489 y1 = (*(*fPAItransferTable)(iPlace))(iTransfer-1) ;
490 y2 = (*(*fPAItransferTable)(iPlace))(iTransfer) ;
491 // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
492 x1 = (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
493 x2 = (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
494 // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
495
496 if ( y1 == y2 ) dNdxCut = y2 ;
497 else
498 {
499 // if ( x1 == x2 ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
500 // if ( std::abs(x1-x2) <= eV ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
501 if ( std::abs(x1-x2) <= eV ) dNdxCut = y1 + (y2 - y1)*0.5 ;
502 else dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;
503 }
504 // G4cout<<""<<dNdxCut<<G4endl;
505 return dNdxCut ;
506}
507
508///////////////////////////////////////////////////////////////////////
509//
510// Returns integral PAI cherenkovcross section for energy transfers >= transferCut
511
512G4double
513G4PAIPhotonModel::GetdNdxPhotonCut( G4int iPlace, G4double transferCut)
514{
515 G4int iTransfer;
516 G4double x1, x2, y1, y2, dNdxCut;
517 // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
518 // G4cout<<"size = "<<G4int((*fPAIphotonTable)(iPlace)->GetVectorLength())
519 // <<G4endl;
520 for( iTransfer = 0 ;
521 iTransfer < G4int((*fPAIphotonTable)(iPlace)->GetVectorLength()) ;
522 iTransfer++)
523 {
524 if(transferCut <= (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
525 {
526 break ;
527 }
528 }
529 if ( iTransfer >= G4int((*fPAIphotonTable)(iPlace)->GetVectorLength()) )
530 {
531 iTransfer = (*fPAIphotonTable)(iPlace)->GetVectorLength() - 1 ;
532 }
533 y1 = (*(*fPAIphotonTable)(iPlace))(iTransfer-1) ;
534 y2 = (*(*fPAIphotonTable)(iPlace))(iTransfer) ;
535 // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
536 x1 = (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
537 x2 = (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
538 // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
539
540 if ( y1 == y2 ) dNdxCut = y2 ;
541 else
542 {
543 // if ( x1 == x2 ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
544 // if ( std::abs(x1-x2) <= eV ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
545 if ( std::abs(x1-x2) <= eV ) dNdxCut = y1 + (y2 - y1)*0.5 ;
546 else dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;
547 }
548 // G4cout<<""<<dNdxPhotonCut<<G4endl;
549 return dNdxCut ;
550}
551
552///////////////////////////////////////////////////////////////////////
553//
554// Returns integral PAI cross section for energy transfers >= transferCut
555
556G4double
557G4PAIPhotonModel::GetdNdxPlasmonCut( G4int iPlace, G4double transferCut)
558{
559 G4int iTransfer;
560 G4double x1, x2, y1, y2, dNdxCut;
561
562 // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
563 // G4cout<<"size = "<<G4int((*fPAIPlasmonTable)(iPlace)->GetVectorLength())
564 // <<G4endl;
565 for( iTransfer = 0 ;
566 iTransfer < G4int((*fPAIplasmonTable)(iPlace)->GetVectorLength()) ;
567 iTransfer++)
568 {
569 if(transferCut <= (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
570 {
571 break ;
572 }
573 }
574 if ( iTransfer >= G4int((*fPAIplasmonTable)(iPlace)->GetVectorLength()) )
575 {
576 iTransfer = (*fPAIplasmonTable)(iPlace)->GetVectorLength() - 1 ;
577 }
578 y1 = (*(*fPAIplasmonTable)(iPlace))(iTransfer-1) ;
579 y2 = (*(*fPAIplasmonTable)(iPlace))(iTransfer) ;
580 // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
581 x1 = (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
582 x2 = (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
583 // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
584
585 if ( y1 == y2 ) dNdxCut = y2 ;
586 else
587 {
588 // if ( x1 == x2 ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
589 // if ( std::abs(x1-x2) <= eV ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
590 if ( std::abs(x1-x2) <= eV ) dNdxCut = y1 + (y2 - y1)*0.5 ;
591 else dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;
592 }
593 // G4cout<<""<<dNdxPlasmonCut<<G4endl;
594 return dNdxCut ;
595}
596
597///////////////////////////////////////////////////////////////////////
598//
599// Returns integral dEdx for energy transfers >= transferCut
600
601G4double
602G4PAIPhotonModel::GetdEdxCut( G4int iPlace, G4double transferCut)
603{
604 G4int iTransfer;
605 G4double x1, x2, y1, y2, dEdxCut;
606 // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
607 // G4cout<<"size = "<<G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength())
608 // <<G4endl;
609 for( iTransfer = 0 ;
610 iTransfer < G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength()) ;
611 iTransfer++)
612 {
613 if(transferCut <= (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
614 {
615 break ;
616 }
617 }
618 if ( iTransfer >= G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength()) )
619 {
620 iTransfer = (*fPAIdEdxTable)(iPlace)->GetVectorLength() - 1 ;
621 }
622 y1 = (*(*fPAIdEdxTable)(iPlace))(iTransfer-1) ;
623 y2 = (*(*fPAIdEdxTable)(iPlace))(iTransfer) ;
624 // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
625 x1 = (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
626 x2 = (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
627 // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
628
629 if ( y1 == y2 ) dEdxCut = y2 ;
630 else
631 {
632 // if ( x1 == x2 ) dEdxCut = y1 + (y2 - y1)*G4UniformRand() ;
633 // if ( std::abs(x1-x2) <= eV ) dEdxCut = y1 + (y2 - y1)*G4UniformRand() ;
634 if ( std::abs(x1-x2) <= eV ) dEdxCut = y1 + (y2 - y1)*0.5 ;
635 else dEdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;
636 }
637 // G4cout<<""<<dEdxCut<<G4endl;
638 return dEdxCut ;
639}
640
641//////////////////////////////////////////////////////////////////////////////
642
643G4double G4PAIPhotonModel::ComputeDEDXPerVolume(const G4Material*,
644 const G4ParticleDefinition* p,
645 G4double kineticEnergy,
646 G4double cutEnergy)
647{
648 G4int iTkin,iPlace;
649 size_t jMat;
650
651 //G4double cut = std::min(MaxSecondaryEnergy(p, kineticEnergy), cutEnergy);
652 G4double cut = cutEnergy;
653
654 G4double particleMass = p->GetPDGMass();
655 G4double scaledTkin = kineticEnergy*proton_mass_c2/particleMass;
656 G4double charge = p->GetPDGCharge()/eplus;
657 G4double charge2 = charge*charge;
658 G4double dEdx = 0.;
659 const G4MaterialCutsCouple* matCC = CurrentCouple();
660
661 for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
662 {
663 if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
664 }
665 if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
666
667 fPAIdEdxTable = fPAIdEdxBank[jMat];
668 fdEdxVector = fdEdxTable[jMat];
669 for(iTkin = 0 ; iTkin < fTotBin ; iTkin++)
670 {
671 if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;
672 }
673 iPlace = iTkin - 1;
674 if(iPlace < 0) iPlace = 0;
675 dEdx = charge2*( (*fdEdxVector)(iPlace) - GetdEdxCut(iPlace,cut) ) ;
676
677 if( dEdx < 0.) dEdx = 0.;
678 return dEdx;
679}
680
681/////////////////////////////////////////////////////////////////////////
682
683G4double G4PAIPhotonModel::CrossSectionPerVolume( const G4Material*,
684 const G4ParticleDefinition* p,
685 G4double kineticEnergy,
686 G4double cutEnergy,
687 G4double maxEnergy )
688{
689 G4int iTkin,iPlace;
690 size_t jMat, jMatCC;
691 G4double tmax = std::min(MaxSecondaryEnergy(p, kineticEnergy), maxEnergy);
692 if(cutEnergy >= tmax) return 0.0;
693 G4double particleMass = p->GetPDGMass();
694 G4double scaledTkin = kineticEnergy*proton_mass_c2/particleMass;
695 G4double charge = p->GetPDGCharge();
696 G4double charge2 = charge*charge, cross, cross1, cross2;
697 G4double photon1, photon2, plasmon1, plasmon2;
698
699 const G4MaterialCutsCouple* matCC = CurrentCouple();
700
701 const G4ProductionCutsTable* theCoupleTable=
702 G4ProductionCutsTable::GetProductionCutsTable();
703
704 size_t numOfCouples = theCoupleTable->GetTableSize();
705
706 for (jMatCC = 0 ; jMatCC < numOfCouples ; jMatCC++ )
707 {
708 if( matCC == theCoupleTable->GetMaterialCutsCouple(jMatCC) ) break;
709 }
710 if( jMatCC == numOfCouples && jMatCC > 0 ) jMatCC--;
711
712 const vector<G4double>* photonCutInKineticEnergy = theCoupleTable->
713 GetEnergyCutsVector(idxG4GammaCut);
714
715 G4double photonCut = (*photonCutInKineticEnergy)[jMatCC] ;
716
717 for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
718 {
719 if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
720 }
721 if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
722
723 fPAItransferTable = fPAIxscBank[jMat];
724 fPAIphotonTable = fPAIphotonBank[jMat];
725 fPAIplasmonTable = fPAIplasmonBank[jMat];
726
727 for(iTkin = 0 ; iTkin < fTotBin ; iTkin++)
728 {
729 if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;
730 }
731 iPlace = iTkin - 1;
732 if(iPlace < 0) iPlace = 0;
733
734 // G4cout<<"iPlace = "<<iPlace<<"; tmax = "
735 // <<tmax<<"; cutEnergy = "<<cutEnergy<<G4endl;
736 photon1 = GetdNdxPhotonCut(iPlace,tmax);
737 photon2 = GetdNdxPhotonCut(iPlace,photonCut);
738
739 plasmon1 = GetdNdxPlasmonCut(iPlace,tmax);
740 plasmon2 = GetdNdxPlasmonCut(iPlace,cutEnergy);
741
742 cross1 = photon1 + plasmon1;
743 // G4cout<<"cross1 = "<<cross1<<G4endl;
744 cross2 = photon2 + plasmon2;
745 // G4cout<<"cross2 = "<<cross2<<G4endl;
746 cross = (cross2 - cross1)*charge2;
747 // G4cout<<"cross = "<<cross<<G4endl;
748
749 if( cross < 0. ) cross = 0.;
750 return cross;
751}
752
753///////////////////////////////////////////////////////////////////////////
754//
755// It is analog of PostStepDoIt in terms of secondary electron or photon to
756// be returned as G4Dynamicparticle*.
757//
758
759void G4PAIPhotonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
760 const G4MaterialCutsCouple* matCC,
761 const G4DynamicParticle* dp,
762 G4double tmin,
763 G4double maxEnergy)
764{
765 size_t jMat;
766 for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
767 {
768 if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
769 }
770 if( jMat == fMaterialCutsCoupleVector.size() && jMat > 0 ) jMat--;
771
772 fPAItransferTable = fPAIxscBank[jMat];
773 fPAIphotonTable = fPAIphotonBank[jMat];
774 fPAIplasmonTable = fPAIplasmonBank[jMat];
775
776 fdNdxCutVector = fdNdxCutTable[jMat];
777 fdNdxCutPhotonVector = fdNdxCutPhotonTable[jMat];
778 fdNdxCutPlasmonVector = fdNdxCutPlasmonTable[jMat];
779
780 G4double tmax = min(MaxSecondaryKinEnergy(dp), maxEnergy);
781 if( tmin >= tmax && fVerbose > 0)
782 {
783 G4cout<<"G4PAIPhotonModel::SampleSecondary: tmin >= tmax "<<G4endl;
784 }
785
786 G4ThreeVector direction = dp->GetMomentumDirection();
787 G4double particleMass = dp->GetMass();
788 G4double kineticEnergy = dp->GetKineticEnergy();
789 G4double scaledTkin = kineticEnergy*fMass/particleMass;
790 G4double totalEnergy = kineticEnergy + particleMass;
791 G4double pSquare = kineticEnergy*(totalEnergy+particleMass);
792
793 G4int iTkin;
794 for(iTkin=0;iTkin<fTotBin;iTkin++)
795 {
796 if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;
797 }
798 G4int iPlace = iTkin - 1 ;
799 if(iPlace < 0) iPlace = 0;
800
801 G4double dNdxPhotonCut = (*fdNdxCutPhotonVector)(iPlace) ;
802 G4double dNdxPlasmonCut = (*fdNdxCutPlasmonVector)(iPlace) ;
803 G4double dNdxCut = dNdxPhotonCut + dNdxPlasmonCut;
804
805 G4double ratio;
806 if (dNdxCut > 0.) ratio = dNdxPhotonCut/dNdxCut;
807 else ratio = 0.;
808
809 if(ratio < G4UniformRand() ) // secondary e-
810 {
811 G4double deltaTkin = GetPostStepTransfer(fPAIplasmonTable, fdNdxCutPlasmonVector,
812 iPlace, scaledTkin);
813
814// G4cout<<"PAIPhotonModel PlasmonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl ;
815
816 if( deltaTkin <= 0. )
817 {
818 G4cout<<"G4PAIPhotonModel::SampleSecondary e- deltaTkin = "<<deltaTkin<<G4endl;
819 }
820 if( deltaTkin <= 0.) return;
821
822 G4double deltaTotalMomentum = sqrt(deltaTkin*(deltaTkin + 2. * electron_mass_c2 ));
823 G4double totalMomentum = sqrt(pSquare);
824 G4double costheta = deltaTkin*(totalEnergy + electron_mass_c2)
825 /(deltaTotalMomentum * totalMomentum);
826
827 if( costheta > 0.99999 ) costheta = 0.99999;
828 G4double sintheta = 0.0;
829 G4double sin2 = 1. - costheta*costheta;
830 if( sin2 > 0.) sintheta = sqrt(sin2);
831
832 // direction of the delta electron
833
834 G4double phi = twopi*G4UniformRand();
835 G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
836
837 G4ThreeVector deltaDirection(dirx,diry,dirz);
838 deltaDirection.rotateUz(direction);
839
840 // primary change
841
842 kineticEnergy -= deltaTkin;
843 G4ThreeVector dir = totalMomentum*direction - deltaTotalMomentum*deltaDirection;
844 direction = dir.unit();
845 fParticleChange->SetProposedMomentumDirection(direction);
846
847 // create G4DynamicParticle object for e- delta ray
848
849 G4DynamicParticle* deltaRay = new G4DynamicParticle;
850 deltaRay->SetDefinition(G4Electron::Electron());
851 deltaRay->SetKineticEnergy( deltaTkin );
852 deltaRay->SetMomentumDirection(deltaDirection);
853 vdp->push_back(deltaRay);
854
855 }
856 else // secondary 'Cherenkov' photon
857 {
858 G4double deltaTkin = GetPostStepTransfer(fPAIphotonTable, fdNdxCutPhotonVector,
859 iPlace,scaledTkin);
860
861 // G4cout<<"PAIPhotonModel PhotonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl ;
862
863 if( deltaTkin <= 0. )
864 {
865 G4cout<<"G4PAIPhotonModel::SampleSecondary gamma deltaTkin = "<<deltaTkin<<G4endl;
866 }
867 if( deltaTkin <= 0.) return;
868
869 G4double costheta = 0.; // G4UniformRand(); // VG: ??? for start only
870 G4double sintheta = sqrt((1.+costheta)*(1.-costheta));
871
872 // direction of the 'Cherenkov' photon
873 G4double phi = twopi*G4UniformRand();
874 G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
875
876 G4ThreeVector deltaDirection(dirx,diry,dirz);
877 deltaDirection.rotateUz(direction);
878
879 // primary change
880 kineticEnergy -= deltaTkin;
881
882 // create G4DynamicParticle object for photon ray
883
884 G4DynamicParticle* photonRay = new G4DynamicParticle;
885 photonRay->SetDefinition( G4Gamma::Gamma() );
886 photonRay->SetKineticEnergy( deltaTkin );
887 photonRay->SetMomentumDirection(deltaDirection);
888
889 vdp->push_back(photonRay);
890 }
891
892 fParticleChange->SetProposedKineticEnergy(kineticEnergy);
893}
894
895
896///////////////////////////////////////////////////////////////////////
897//
898// Returns post step PAI energy transfer > cut electron/photon energy according to passed
899// scaled kinetic energy of particle
900
901G4double
902G4PAIPhotonModel::GetPostStepTransfer( G4PhysicsTable* pTable,
903 G4PhysicsLogVector* pVector,
904 G4int iPlace, G4double scaledTkin )
905{
906 // G4cout<<"G4PAIPhotonModel::GetPostStepTransfer"<<G4endl ;
907
908 G4int iTkin = iPlace+1, iTransfer;
909 G4double transfer = 0.0, position, dNdxCut1, dNdxCut2, E1, E2, W1, W2, W ;
910
911 dNdxCut1 = (*pVector)(iPlace) ;
912
913 // G4cout<<"iPlace = "<<iPlace<<endl ;
914
915 if(iTkin == fTotBin) // Fermi plato, try from left
916 {
917 position = dNdxCut1*G4UniformRand() ;
918
919 for( iTransfer = 0;
920 iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
921 {
922 if(position >= (*(*pTable)(iPlace))(iTransfer)) break ;
923 }
924 transfer = GetEnergyTransfer(pTable,iPlace,position,iTransfer);
925 }
926 else
927 {
928 dNdxCut2 = (*pVector)(iPlace+1) ;
929 if(iTkin == 0) // Tkin is too small, trying from right only
930 {
931 position = dNdxCut2*G4UniformRand() ;
932
933 for( iTransfer = 0;
934 iTransfer < G4int((*pTable)(iPlace+1)->GetVectorLength()); iTransfer++ )
935 {
936 if(position >= (*(*pTable)(iPlace+1))(iTransfer)) break ;
937 }
938 transfer = GetEnergyTransfer(pTable,iPlace+1,position,iTransfer);
939 }
940 else // general case: Tkin between two vectors of the material
941 {
942 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ;
943 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ;
944 W = 1.0/(E2 - E1) ;
945 W1 = (E2 - scaledTkin)*W ;
946 W2 = (scaledTkin - E1)*W ;
947
948 position = ( dNdxCut1*W1 + dNdxCut2*W2 )*G4UniformRand() ;
949
950 // G4cout<<position<<"\t" ;
951
952 G4int iTrMax1, iTrMax2, iTrMax;
953
954 iTrMax1 = G4int((*pTable)(iPlace)->GetVectorLength());
955 iTrMax2 = G4int((*pTable)(iPlace+1)->GetVectorLength());
956
957 if (iTrMax1 >= iTrMax2) iTrMax = iTrMax2;
958 else iTrMax = iTrMax1;
959
960 for( iTransfer = 0; iTransfer < iTrMax; iTransfer++ )
961 {
962 if( position >=
963 ( (*(*pTable)(iPlace))(iTransfer)*W1 +
964 (*(*pTable)(iPlace+1))(iTransfer)*W2) ) break ;
965 }
966 transfer = GetEnergyTransfer(pTable, iPlace, position, iTransfer);
967 }
968 }
969 // G4cout<<"PAIPhotonModel PostStepTransfer = "<<transfer/keV<<" keV"<<G4endl ;
970 if(transfer < 0.0 ) transfer = 0.0 ;
971 return transfer ;
972}
973
974///////////////////////////////////////////////////////////////////////
975//
976// Returns random PAI energy transfer according to passed
977// indexes of particle
978
979G4double
980G4PAIPhotonModel::GetEnergyTransfer( G4PhysicsTable* pTable, G4int iPlace,
981 G4double position, G4int iTransfer )
982{
983 G4int iTransferMax;
984 G4double x1, x2, y1, y2, energyTransfer;
985
986 if(iTransfer == 0)
987 {
988 energyTransfer = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
989 }
990 else
991 {
992 iTransferMax = G4int((*pTable)(iPlace)->GetVectorLength());
993
994 if ( iTransfer >= iTransferMax) iTransfer = iTransferMax - 1;
995
996 y1 = (*(*pTable)(iPlace))(iTransfer-1);
997 y2 = (*(*fPAItransferTable)(iPlace))(iTransfer);
998
999 x1 = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1);
1000 x2 = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
1001
1002 if ( x1 == x2 ) energyTransfer = x2;
1003 else
1004 {
1005 if ( y1 == y2 ) energyTransfer = x1 + (x2 - x1)*G4UniformRand();
1006 else
1007 {
1008 energyTransfer = x1 + (position - y1)*(x2 - x1)/(y2 - y1);
1009 }
1010 }
1011 }
1012 return energyTransfer;
1013}
1014
1015///////////////////////////////////////////////////////////////////////
1016//
1017// Works like AlongStepDoIt method of process family
1018
1019
1020
1021
1022G4double G4PAIPhotonModel::SampleFluctuations( const G4Material* material,
1023 const G4DynamicParticle* aParticle,
1024 G4double&,
1025 G4double& step,
1026 G4double&)
1027{
1028 size_t jMat;
1029 for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
1030 {
1031 if( material == fMaterialCutsCoupleVector[jMat]->GetMaterial() ) break;
1032 }
1033 if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
1034
1035 fPAItransferTable = fPAIxscBank[jMat];
1036 fPAIphotonTable = fPAIphotonBank[jMat];
1037 fPAIplasmonTable = fPAIplasmonBank[jMat];
1038
1039 fdNdxCutVector = fdNdxCutTable[jMat];
1040 fdNdxCutPhotonVector = fdNdxCutPhotonTable[jMat];
1041 fdNdxCutPlasmonVector = fdNdxCutPlasmonTable[jMat];
1042
1043 G4int iTkin, iPlace ;
1044
1045 // G4cout<<"G4PAIPhotonModel::SampleFluctuations"<<G4endl ;
1046
1047 G4double loss, photonLoss, plasmonLoss, charge2 ;
1048
1049
1050 G4double Tkin = aParticle->GetKineticEnergy() ;
1051 G4double MassRatio = proton_mass_c2/aParticle->GetDefinition()->GetPDGMass() ;
1052 G4double charge = aParticle->GetDefinition()->GetPDGCharge() ;
1053 charge2 = charge*charge ;
1054 G4double scaledTkin = Tkin*MassRatio ;
1055 G4double cof = step*charge2;
1056
1057 for( iTkin = 0; iTkin < fTotBin; iTkin++)
1058 {
1059 if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;
1060 }
1061 iPlace = iTkin - 1 ;
1062 if( iPlace < 0 ) iPlace = 0;
1063
1064 photonLoss = GetAlongStepTransfer(fPAIphotonTable,fdNdxCutPhotonVector,
1065iPlace,scaledTkin,step,cof);
1066
1067 // G4cout<<"PAIPhotonModel AlongStepPhotonLoss = "<<photonLoss/keV<<" keV"<<G4endl ;
1068
1069 plasmonLoss = GetAlongStepTransfer(fPAIplasmonTable,fdNdxCutPlasmonVector,
1070iPlace,scaledTkin,step,cof);
1071
1072 // G4cout<<"PAIPhotonModel AlongStepPlasmonLoss = "<<plasmonLoss/keV<<" keV"<<G4endl ;
1073
1074 loss = photonLoss + plasmonLoss;
1075
1076 // G4cout<<"PAIPhotonModel AlongStepLoss = "<<loss/keV<<" keV"<<G4endl ;
1077
1078 return loss;
1079}
1080
1081///////////////////////////////////////////////////////////////////////
1082//
1083// Returns along step PAI energy transfer < cut electron/photon energy according to passed
1084// scaled kinetic energy of particle and cof = step*charge*charge
1085
1086G4double
1087G4PAIPhotonModel::GetAlongStepTransfer( G4PhysicsTable* pTable,
1088 G4PhysicsLogVector* pVector,
1089 G4int iPlace, G4double scaledTkin,G4double step,
1090 G4double cof )
1091{
1092 G4int iTkin = iPlace + 1, iTransfer;
1093 G4double loss = 0., position, E1, E2, W1, W2, W, dNdxCut1, dNdxCut2, meanNumber;
1094 G4double lambda, stepDelta, stepSum=0. ;
1095 G4long numOfCollisions=0;
1096 G4bool numb = true;
1097
1098 dNdxCut1 = (*pVector)(iPlace) ;
1099
1100 // G4cout<<"iPlace = "<<iPlace<<endl ;
1101
1102 if(iTkin == fTotBin) // Fermi plato, try from left
1103 {
1104 meanNumber = ((*(*pTable)(iPlace))(0) - dNdxCut1)*cof;
1105 if(meanNumber < 0.) meanNumber = 0. ;
1106 // numOfCollisions = RandPoisson::shoot(meanNumber) ;
1107 if( meanNumber > 0.) lambda = step/meanNumber;
1108 else lambda = DBL_MAX;
1109 while(numb)
1110 {
1111 stepDelta = CLHEP::RandExponential::shoot(lambda);
1112 stepSum += stepDelta;
1113 if(stepSum >= step) break;
1114 numOfCollisions++;
1115 }
1116
1117 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl ;
1118
1119 while(numOfCollisions)
1120 {
1121 position = dNdxCut1+
1122 ((*(*pTable)(iPlace))(0) - dNdxCut1)*G4UniformRand() ;
1123
1124 for( iTransfer = 0;
1125 iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
1126 {
1127 if(position >= (*(*pTable)(iPlace))(iTransfer)) break ;
1128 }
1129 loss += GetEnergyTransfer(pTable,iPlace,position,iTransfer);
1130 numOfCollisions-- ;
1131 }
1132 }
1133 else
1134 {
1135 dNdxCut2 = (*pVector)(iPlace+1) ;
1136
1137 if(iTkin == 0) // Tkin is too small, trying from right only
1138 {
1139 meanNumber = ((*(*pTable)(iPlace+1))(0) - dNdxCut2)*cof;
1140 if( meanNumber < 0. ) meanNumber = 0. ;
1141 // numOfCollisions = CLHEP::RandPoisson::shoot(meanNumber) ;
1142 if( meanNumber > 0.) lambda = step/meanNumber;
1143 else lambda = DBL_MAX;
1144 while(numb)
1145 {
1146 stepDelta = CLHEP::RandExponential::shoot(lambda);
1147 stepSum += stepDelta;
1148 if(stepSum >= step) break;
1149 numOfCollisions++;
1150 }
1151
1152 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl ;
1153
1154 while(numOfCollisions)
1155 {
1156 position = dNdxCut2+
1157 ((*(*pTable)(iPlace+1))(0) - dNdxCut2)*G4UniformRand();
1158
1159 for( iTransfer = 0;
1160 iTransfer < G4int((*pTable)(iPlace+1)->GetVectorLength()); iTransfer++ )
1161 {
1162 if(position >= (*(*pTable)(iPlace+1))(iTransfer)) break ;
1163 }
1164 loss += GetEnergyTransfer(pTable,iPlace+1,position,iTransfer);
1165 numOfCollisions-- ;
1166 }
1167 }
1168 else // general case: Tkin between two vectors of the material
1169 {
1170 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ;
1171 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ;
1172 W = 1.0/(E2 - E1) ;
1173 W1 = (E2 - scaledTkin)*W ;
1174 W2 = (scaledTkin - E1)*W ;
1175
1176 // G4cout<<"(*(*pTable)(iPlace))(0) = "<<
1177 // (*(*pTable)(iPlace))(0)<<G4endl ;
1178 // G4cout<<"(*(*pTable)(iPlace+1))(0) = "<<
1179 // (*(*pTable)(iPlace+1))(0)<<G4endl ;
1180
1181 meanNumber=( ((*(*pTable)(iPlace))(0)-dNdxCut1)*W1 +
1182 ((*(*pTable)(iPlace+1))(0)-dNdxCut2)*W2 )*cof;
1183 if(meanNumber<0.0) meanNumber = 0.0;
1184 // numOfCollisions = CLHEP::RandPoisson::shoot(meanNumber) ;
1185 if( meanNumber > 0.) lambda = step/meanNumber;
1186 else lambda = DBL_MAX;
1187 while(numb)
1188 {
1189 stepDelta = CLHEP::RandExponential::shoot(lambda);
1190 stepSum += stepDelta;
1191 if(stepSum >= step) break;
1192 numOfCollisions++;
1193 }
1194
1195 // G4cout<<"numOfCollisions = "<<numOfCollisions<<endl ;
1196
1197 while(numOfCollisions)
1198 {
1199 position = dNdxCut1*W1 + dNdxCut2*W2 +
1200 ( ( (*(*pTable)(iPlace ))(0) - dNdxCut1)*W1 +
1201
1202 ( (*(*pTable)(iPlace+1))(0) - dNdxCut2)*W2 )*G4UniformRand();
1203
1204 // G4cout<<position<<"\t" ;
1205
1206 for( iTransfer = 0;
1207 iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
1208 {
1209 if( position >=
1210 ( (*(*pTable)(iPlace))(iTransfer)*W1 +
1211 (*(*pTable)(iPlace+1))(iTransfer)*W2) )
1212 {
1213 break ;
1214 }
1215 }
1216 // loss += (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
1217 loss += GetEnergyTransfer(pTable,iPlace,position,iTransfer);
1218 numOfCollisions-- ;
1219 }
1220 }
1221 }
1222
1223 return loss ;
1224
1225}
1226
1227//////////////////////////////////////////////////////////////////////
1228//
1229// Returns the statistical estimation of the energy loss distribution variance
1230//
1231
1232
1233G4double G4PAIPhotonModel::Dispersion( const G4Material* material,
1234 const G4DynamicParticle* aParticle,
1235 G4double& tmax,
1236 G4double& step )
1237{
1238 G4double loss, sumLoss=0., sumLoss2=0., sigma2, meanLoss=0.;
1239 for(G4int i = 0 ; i < fMeanNumber; i++)
1240 {
1241 loss = SampleFluctuations(material,aParticle,tmax,step,meanLoss);
1242 sumLoss += loss;
1243 sumLoss2 += loss*loss;
1244 }
1245 meanLoss = sumLoss/fMeanNumber;
1246 sigma2 = meanLoss*meanLoss + (sumLoss2-2*sumLoss*meanLoss)/fMeanNumber;
1247 return sigma2;
1248}
1249
1250/////////////////////////////////////////////////////////////////////
1251
1252G4double G4PAIPhotonModel::MaxSecondaryEnergy( const G4ParticleDefinition* p,
1253 G4double kinEnergy)
1254{
1255 G4double tmax = kinEnergy;
1256 if(p == fElectron) tmax *= 0.5;
1257 else if(p != fPositron) {
1258 G4double mass = p->GetPDGMass();
1259 G4double ratio= electron_mass_c2/mass;
1260 G4double gamma= kinEnergy/mass + 1.0;
1261 tmax = 2.0*electron_mass_c2*(gamma*gamma - 1.) /
1262 (1. + 2.0*gamma*ratio + ratio*ratio);
1263 }
1264 return tmax;
1265}
1266
1267///////////////////////////////////////////////////////////////
1268
1269void G4PAIPhotonModel::DefineForRegion(const G4Region* r)
1270{
1271 fPAIRegionVector.push_back(r);
1272}
1273
1274
1275//
1276//
1277/////////////////////////////////////////////////
1278
1279
1280
1281
1282
1283
Note: See TracBrowser for help on using the repository browser.