| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4PairProductionRelModel.cc,v 1.3 2009/05/15 17:12:33 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4PairProductionRelModel
|
|---|
| 35 | //
|
|---|
| 36 | // Author: Andreas Schaelicke
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 02.04.2009
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| 41 | //
|
|---|
| 42 | // Class Description:
|
|---|
| 43 | //
|
|---|
| 44 | // Main References:
|
|---|
| 45 | // J.W.Motz et.al., Rev. Mod. Phys. 41 (1969) 581.
|
|---|
| 46 | // S.Klein, Rev. Mod. Phys. 71 (1999) 1501.
|
|---|
| 47 | // T.Stanev et.al., Phys. Rev. D25 (1982) 1291.
|
|---|
| 48 | // M.L.Ter-Mikaelian, High-energy Electromagnetic Processes in Condensed Media, Wiley, 1972.
|
|---|
| 49 | //
|
|---|
| 50 | // -------------------------------------------------------------------
|
|---|
| 51 | //
|
|---|
| 52 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 53 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 54 |
|
|---|
| 55 | #include "G4PairProductionRelModel.hh"
|
|---|
| 56 | #include "G4Gamma.hh"
|
|---|
| 57 | #include "G4Electron.hh"
|
|---|
| 58 | #include "G4Positron.hh"
|
|---|
| 59 |
|
|---|
| 60 | #include "G4ParticleChangeForGamma.hh"
|
|---|
| 61 | #include "G4LossTableManager.hh"
|
|---|
| 62 |
|
|---|
| 63 |
|
|---|
| 64 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 65 |
|
|---|
| 66 | using namespace std;
|
|---|
| 67 |
|
|---|
| 68 |
|
|---|
| 69 | const G4double G4PairProductionRelModel::facFel = log(184.15);
|
|---|
| 70 | const G4double G4PairProductionRelModel::facFinel = log(1194.); // 1440.
|
|---|
| 71 |
|
|---|
| 72 | const G4double G4PairProductionRelModel::preS1 = 1./(184.15*184.15);
|
|---|
| 73 | const G4double G4PairProductionRelModel::logTwo = log(2.);
|
|---|
| 74 |
|
|---|
| 75 | const G4double G4PairProductionRelModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083,
|
|---|
| 76 | 0.5917, 0.7628, 0.8983, 0.9801 };
|
|---|
| 77 | const G4double G4PairProductionRelModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813,
|
|---|
| 78 | 0.1813, 0.1569, 0.1112, 0.0506 };
|
|---|
| 79 | const G4double G4PairProductionRelModel::Fel_light[] = {0., 5.31 , 4.79 , 4.74 , 4.71} ;
|
|---|
| 80 | const G4double G4PairProductionRelModel::Finel_light[] = {0., 6.144 , 5.621 , 5.805 , 5.924} ;
|
|---|
| 81 |
|
|---|
| 82 |
|
|---|
| 83 |
|
|---|
| 84 | G4PairProductionRelModel::G4PairProductionRelModel(const G4ParticleDefinition*,
|
|---|
| 85 | const G4String& nam)
|
|---|
| 86 | : G4VEmModel(nam),
|
|---|
| 87 | theCrossSectionTable(0),
|
|---|
| 88 | nbins(10),
|
|---|
| 89 | fLPMconstant(fine_structure_const*electron_mass_c2*electron_mass_c2/(4.*pi*hbarc)*0.5),
|
|---|
| 90 | fLPMflag(true),
|
|---|
| 91 | lpmEnergy(0.),
|
|---|
| 92 | use_completescreening(false)
|
|---|
| 93 | {
|
|---|
| 94 | fParticleChange = 0;
|
|---|
| 95 | theGamma = G4Gamma::Gamma();
|
|---|
| 96 | thePositron = G4Positron::Positron();
|
|---|
| 97 | theElectron = G4Electron::Electron();
|
|---|
| 98 |
|
|---|
| 99 | nist = G4NistManager::Instance();
|
|---|
| 100 |
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 104 |
|
|---|
| 105 | G4PairProductionRelModel::~G4PairProductionRelModel()
|
|---|
| 106 | {
|
|---|
| 107 | if(theCrossSectionTable) {
|
|---|
| 108 | theCrossSectionTable->clearAndDestroy();
|
|---|
| 109 | delete theCrossSectionTable;
|
|---|
| 110 | }
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 114 |
|
|---|
| 115 | void G4PairProductionRelModel::Initialise(const G4ParticleDefinition*,
|
|---|
| 116 | const G4DataVector&)
|
|---|
| 117 | {
|
|---|
| 118 | fParticleChange = GetParticleChangeForGamma();
|
|---|
| 119 |
|
|---|
| 120 | if(theCrossSectionTable) {
|
|---|
| 121 | theCrossSectionTable->clearAndDestroy();
|
|---|
| 122 | delete theCrossSectionTable;
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | const G4ElementTable* theElementTable = G4Element::GetElementTable();
|
|---|
| 126 | size_t nvect = G4Element::GetNumberOfElements();
|
|---|
| 127 | theCrossSectionTable = new G4PhysicsTable(nvect);
|
|---|
| 128 | G4PhysicsLogVector* ptrVector;
|
|---|
| 129 | G4double emin = LowEnergyLimit();
|
|---|
| 130 | G4double emax = HighEnergyLimit();
|
|---|
| 131 | G4int n = nbins*G4int(log10(emax/emin));
|
|---|
| 132 | G4bool spline = G4LossTableManager::Instance()->SplineFlag();
|
|---|
| 133 | G4double e, value;
|
|---|
| 134 |
|
|---|
| 135 | for(size_t j=0; j<nvect ; j++) {
|
|---|
| 136 |
|
|---|
| 137 | ptrVector = new G4PhysicsLogVector(emin, emax, n);
|
|---|
| 138 | ptrVector->SetSpline(spline);
|
|---|
| 139 | G4double Z = (*theElementTable)[j]->GetZ();
|
|---|
| 140 | G4VEmModel::SetCurrentElement((*theElementTable)[j]);
|
|---|
| 141 | G4int iz = G4int(Z);
|
|---|
| 142 | indexZ[iz] = j;
|
|---|
| 143 |
|
|---|
| 144 | for(G4int i=0; i<nbins; i++) {
|
|---|
| 145 | e = ptrVector->GetLowEdgeEnergy( i ) ;
|
|---|
| 146 | value = ComputeCrossSectionPerAtom(theGamma, e, Z);
|
|---|
| 147 | ptrVector->PutValue( i, value );
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | theCrossSectionTable->insert(ptrVector);
|
|---|
| 151 | }
|
|---|
| 152 | }
|
|---|
| 153 |
|
|---|
| 154 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 155 | /*
|
|---|
| 156 | G4double G4PairProductionRelModel::ComputeRelXSectionPerAtom(G4double k, G4double Z)
|
|---|
| 157 | {
|
|---|
| 158 |
|
|---|
| 159 | G4double cross = 0.0;
|
|---|
| 160 |
|
|---|
| 161 |
|
|---|
| 162 |
|
|---|
| 163 |
|
|---|
| 164 | }
|
|---|
| 165 | */
|
|---|
| 166 |
|
|---|
| 167 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 168 |
|
|---|
| 169 | G4double G4PairProductionRelModel::ComputeXSectionPerAtom(G4double totalEnergy, G4double Z)
|
|---|
| 170 | {
|
|---|
| 171 | G4double cross = 0.0;
|
|---|
| 172 |
|
|---|
| 173 | // number of intervals and integration step
|
|---|
| 174 | G4double vcut = electron_mass_c2/totalEnergy ;
|
|---|
| 175 |
|
|---|
| 176 | // limits by the screening variable
|
|---|
| 177 | G4double dmax = DeltaMax();
|
|---|
| 178 | G4double dmin = min(DeltaMin(totalEnergy),dmax);
|
|---|
| 179 | G4double vcut1 = 0.5 - 0.5*sqrt(1. - dmin/dmax) ;
|
|---|
| 180 | vcut = max(vcut, vcut1);
|
|---|
| 181 |
|
|---|
| 182 |
|
|---|
| 183 | G4double vmax = 0.5;
|
|---|
| 184 | G4int n = 1; // needs optimisation
|
|---|
| 185 |
|
|---|
| 186 | G4double delta = (vmax - vcut)*totalEnergy/G4double(n);
|
|---|
| 187 |
|
|---|
| 188 | G4double e0 = vcut*totalEnergy;
|
|---|
| 189 | G4double xs;
|
|---|
| 190 |
|
|---|
| 191 | // simple integration
|
|---|
| 192 | for(G4int l=0; l<n; l++,e0 += delta) {
|
|---|
| 193 | for(G4int i=0; i<8; i++) {
|
|---|
| 194 |
|
|---|
| 195 | G4double eg = (e0 + xgi[i]*delta);
|
|---|
| 196 | if (fLPMflag && totalEnergy>100.*GeV)
|
|---|
| 197 | xs = ComputeRelDXSectionPerAtom(eg,totalEnergy,Z);
|
|---|
| 198 | else
|
|---|
| 199 | xs = ComputeDXSectionPerAtom(eg,totalEnergy,Z);
|
|---|
| 200 | cross += wgi[i]*xs;
|
|---|
| 201 |
|
|---|
| 202 | }
|
|---|
| 203 | }
|
|---|
| 204 |
|
|---|
| 205 | cross *= delta*2.;
|
|---|
| 206 |
|
|---|
| 207 | return cross;
|
|---|
| 208 | }
|
|---|
| 209 |
|
|---|
| 210 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 211 |
|
|---|
| 212 | G4double
|
|---|
| 213 | G4PairProductionRelModel::ComputeDXSectionPerAtom(G4double eplusEnergy,
|
|---|
| 214 | G4double totalEnergy,
|
|---|
| 215 | G4double /*Z*/)
|
|---|
| 216 | {
|
|---|
| 217 | // most simple case - complete screening:
|
|---|
| 218 |
|
|---|
| 219 | // dsig/dE+ = 4 * alpha * Z**2 * r0**2 / k
|
|---|
| 220 | // * [ (y**2 + (1-y**2) + 2/3*y*(1-y) ) * ( log (183 * Z**-1/3) + 1/9 * y*(1-y) ]
|
|---|
| 221 | // y = E+/k
|
|---|
| 222 | G4double yp=eplusEnergy/totalEnergy;
|
|---|
| 223 | G4double ym=1.-yp;
|
|---|
| 224 |
|
|---|
| 225 | G4double cross = 0.;
|
|---|
| 226 | if (use_completescreening)
|
|---|
| 227 | cross = (yp*yp + ym*ym + 2./3.*ym*yp)*(Fel - fCoulomb) + 1./9.*yp*ym;
|
|---|
| 228 | else {
|
|---|
| 229 | G4double delta = 0.25*DeltaMin(totalEnergy)/(yp*ym);
|
|---|
| 230 | cross = (yp*yp + ym*ym)*(0.25*Phi1(delta) - lnZ/3. - fCoulomb)
|
|---|
| 231 | + 2./3.*ym*yp*(0.25*Phi2(delta) - lnZ/3. - fCoulomb);
|
|---|
| 232 | }
|
|---|
| 233 | return cross/totalEnergy;
|
|---|
| 234 |
|
|---|
| 235 | }
|
|---|
| 236 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 237 |
|
|---|
| 238 | G4double
|
|---|
| 239 | G4PairProductionRelModel::ComputeRelDXSectionPerAtom(G4double eplusEnergy,
|
|---|
| 240 | G4double totalEnergy,
|
|---|
| 241 | G4double /*Z*/)
|
|---|
| 242 | {
|
|---|
| 243 | // most simple case - complete screening:
|
|---|
| 244 |
|
|---|
| 245 | // dsig/dE+ = 4 * alpha * Z**2 * r0**2 / k
|
|---|
| 246 | // * [ (y**2 + (1-y**2) + 2/3*y*(1-y) ) * ( log (183 * Z**-1/3) + 1/9 * y*(1-y) ]
|
|---|
| 247 | // y = E+/k
|
|---|
| 248 | G4double yp=eplusEnergy/totalEnergy;
|
|---|
| 249 | G4double ym=1.-yp;
|
|---|
| 250 |
|
|---|
| 251 | CalcLPMFunctions(totalEnergy,eplusEnergy); // gamma
|
|---|
| 252 |
|
|---|
| 253 | G4double cross = 0.;
|
|---|
| 254 | if (use_completescreening)
|
|---|
| 255 | cross = xiLPM*(2./3.*phiLPM*(yp*yp + ym*ym) + gLPM)*(Fel - fCoulomb);
|
|---|
| 256 | else {
|
|---|
| 257 | G4double delta = 0.25*DeltaMin(totalEnergy)/(yp*ym);
|
|---|
| 258 | cross = (1./3.*gLPM + 2./3.*phiLPM)*(yp*yp + ym*ym)
|
|---|
| 259 | *(0.25*Phi1(delta) - lnZ/3. - fCoulomb)
|
|---|
| 260 | + 2./3.*gLPM*ym*yp*(0.25*Phi2(delta) - lnZ/3. - fCoulomb);
|
|---|
| 261 | cross *= xiLPM;
|
|---|
| 262 | }
|
|---|
| 263 | return cross/totalEnergy;
|
|---|
| 264 |
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 268 |
|
|---|
| 269 | void G4PairProductionRelModel::CalcLPMFunctions(G4double k, G4double eplus)
|
|---|
| 270 | {
|
|---|
| 271 | // *** calculate lpm variable s & sprime ***
|
|---|
| 272 | // Klein eqs. (78) & (79)
|
|---|
| 273 | G4double sprime = sqrt(0.125*k*lpmEnergy/(eplus*(k-eplus)));
|
|---|
| 274 |
|
|---|
| 275 | G4double s1 = preS1*z23;
|
|---|
| 276 | G4double logS1 = 2./3.*lnZ-2.*facFel;
|
|---|
| 277 | G4double logTS1 = logTwo+logS1;
|
|---|
| 278 |
|
|---|
| 279 | xiLPM = 2.;
|
|---|
| 280 |
|
|---|
| 281 | if (sprime>1)
|
|---|
| 282 | xiLPM = 1.;
|
|---|
| 283 | else if (sprime>sqrt(2.)*s1) {
|
|---|
| 284 | G4double h = log(sprime)/logTS1;
|
|---|
| 285 | xiLPM = 1+h-0.08*(1-h)*(1-sqr(1-h))/logTS1;
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | G4double s = sprime/sqrt(xiLPM);
|
|---|
| 289 | // G4cout<<"k="<<k<<" y="<<eplus/k<<G4endl;
|
|---|
| 290 | // G4cout<<"s="<<s<<G4endl;
|
|---|
| 291 |
|
|---|
| 292 | // *** calculate supression functions phi and G ***
|
|---|
| 293 | // Klein eqs. (77)
|
|---|
| 294 | G4double s2=s*s;
|
|---|
| 295 | G4double s3=s*s2;
|
|---|
| 296 | G4double s4=s2*s2;
|
|---|
| 297 |
|
|---|
| 298 | if (s<0.1) {
|
|---|
| 299 | // high suppression limit
|
|---|
| 300 | phiLPM = 6.*s - 18.84955592153876*s2 + 39.47841760435743*s3
|
|---|
| 301 | - 57.69873135166053*s4;
|
|---|
| 302 | gLPM = 37.69911184307752*s2 - 236.8705056261446*s3 + 807.7822389*s4;
|
|---|
| 303 | }
|
|---|
| 304 | else if (s<1.9516) {
|
|---|
| 305 | // intermediate suppression
|
|---|
| 306 | // using eq.77 approxim. valid s<2.
|
|---|
| 307 | phiLPM = 1.-exp(-6.*s*(1.+(3.-pi)*s)
|
|---|
| 308 | +s3/(0.623+0.795*s+0.658*s2));
|
|---|
| 309 | if (s<0.415827397755) {
|
|---|
| 310 | // using eq.77 approxim. valid 0.07<s<2
|
|---|
| 311 | G4double psiLPM = 1-exp(-4*s-8*s2/(1+3.936*s+4.97*s2-0.05*s3+7.50*s4));
|
|---|
| 312 | gLPM = 3*psiLPM-2*phiLPM;
|
|---|
| 313 | }
|
|---|
| 314 | else {
|
|---|
| 315 | // using alternative parametrisiation
|
|---|
| 316 | G4double pre = -0.16072300849123999 + s*3.7550300067531581 + s2*-1.7981383069010097
|
|---|
| 317 | + s3*0.67282686077812381 + s4*-0.1207722909879257;
|
|---|
| 318 | gLPM = tanh(pre);
|
|---|
| 319 | }
|
|---|
| 320 | }
|
|---|
| 321 | else {
|
|---|
| 322 | // low suppression limit valid s>2.
|
|---|
| 323 | phiLPM = 1. - 0.0119048/s4;
|
|---|
| 324 | gLPM = 1. - 0.0230655/s4;
|
|---|
| 325 | }
|
|---|
| 326 |
|
|---|
| 327 | // *** make sure suppression is smaller than 1 ***
|
|---|
| 328 | // *** caused by Migdal approximation in xi ***
|
|---|
| 329 | if (xiLPM*phiLPM>1. || s>0.57) xiLPM=1./phiLPM;
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 |
|
|---|
| 333 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 334 |
|
|---|
| 335 | G4double
|
|---|
| 336 | G4PairProductionRelModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
|
|---|
| 337 | G4double gammaEnergy, G4double Z,
|
|---|
| 338 | G4double, G4double, G4double)
|
|---|
| 339 | {
|
|---|
| 340 | // static const G4double gammaEnergyLimit = 1.5*MeV;
|
|---|
| 341 | G4double crossSection = 0.0 ;
|
|---|
| 342 | if ( Z < 1. ) return crossSection;
|
|---|
| 343 | if ( gammaEnergy <= 2.0*electron_mass_c2 ) return crossSection;
|
|---|
| 344 |
|
|---|
| 345 | SetCurrentElement(Z);
|
|---|
| 346 | // choose calculator according to parameters and switches
|
|---|
| 347 | // in the moment only one calculator:
|
|---|
| 348 | crossSection=ComputeXSectionPerAtom(gammaEnergy,Z);
|
|---|
| 349 |
|
|---|
| 350 | G4double xi = Finel/(Fel - fCoulomb); // inelastic contribution
|
|---|
| 351 | crossSection*=4.*Z*(Z+xi)*fine_structure_const*classic_electr_radius*classic_electr_radius;
|
|---|
| 352 |
|
|---|
| 353 | return crossSection;
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 357 |
|
|---|
| 358 | void
|
|---|
| 359 | G4PairProductionRelModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
|
|---|
| 360 | const G4MaterialCutsCouple* couple,
|
|---|
| 361 | const G4DynamicParticle* aDynamicGamma,
|
|---|
| 362 | G4double,
|
|---|
| 363 | G4double)
|
|---|
| 364 | // The secondaries e+e- energies are sampled using the Bethe - Heitler
|
|---|
| 365 | // cross sections with Coulomb correction.
|
|---|
| 366 | // A modified version of the random number techniques of Butcher & Messel
|
|---|
| 367 | // is used (Nuc Phys 20(1960),15).
|
|---|
| 368 | //
|
|---|
| 369 | // GEANT4 internal units.
|
|---|
| 370 | //
|
|---|
| 371 | // Note 1 : Effects due to the breakdown of the Born approximation at
|
|---|
| 372 | // low energy are ignored.
|
|---|
| 373 | // Note 2 : The differential cross section implicitly takes account of
|
|---|
| 374 | // pair creation in both nuclear and atomic electron fields.
|
|---|
| 375 | // However triplet prodution is not generated.
|
|---|
| 376 | {
|
|---|
| 377 | const G4Material* aMaterial = couple->GetMaterial();
|
|---|
| 378 |
|
|---|
| 379 | G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
|
|---|
| 380 | G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
|
|---|
| 381 |
|
|---|
| 382 | G4double epsil ;
|
|---|
| 383 | G4double epsil0 = electron_mass_c2/GammaEnergy ;
|
|---|
| 384 | if(epsil0 > 1.0) return;
|
|---|
| 385 |
|
|---|
| 386 | // do it fast if GammaEnergy < 2. MeV
|
|---|
| 387 | static const G4double Egsmall=2.*MeV;
|
|---|
| 388 |
|
|---|
| 389 | // select randomly one element constituing the material
|
|---|
| 390 | const G4Element* anElement = SelectRandomAtom(aMaterial, theGamma, GammaEnergy);
|
|---|
| 391 |
|
|---|
| 392 | if (GammaEnergy < Egsmall) {
|
|---|
| 393 |
|
|---|
| 394 | epsil = epsil0 + (0.5-epsil0)*G4UniformRand();
|
|---|
| 395 |
|
|---|
| 396 | } else {
|
|---|
| 397 | // now comes the case with GammaEnergy >= 2. MeV
|
|---|
| 398 |
|
|---|
| 399 | // Extract Coulomb factor for this Element
|
|---|
| 400 | G4double FZ = 8.*(anElement->GetIonisation()->GetlogZ3());
|
|---|
| 401 | if (GammaEnergy > 50.*MeV) FZ += 8.*(anElement->GetfCoulomb());
|
|---|
| 402 |
|
|---|
| 403 | // limits of the screening variable
|
|---|
| 404 | G4double screenfac = 136.*epsil0/(anElement->GetIonisation()->GetZ3());
|
|---|
| 405 | G4double screenmax = exp ((42.24 - FZ)/8.368) - 0.952 ;
|
|---|
| 406 | G4double screenmin = min(4.*screenfac,screenmax);
|
|---|
| 407 |
|
|---|
| 408 | // limits of the energy sampling
|
|---|
| 409 | G4double epsil1 = 0.5 - 0.5*sqrt(1. - screenmin/screenmax) ;
|
|---|
| 410 | G4double epsilmin = max(epsil0,epsil1) , epsilrange = 0.5 - epsilmin;
|
|---|
| 411 |
|
|---|
| 412 | //
|
|---|
| 413 | // sample the energy rate of the created electron (or positron)
|
|---|
| 414 | //
|
|---|
| 415 | //G4double epsil, screenvar, greject ;
|
|---|
| 416 | G4double screenvar, greject ;
|
|---|
| 417 |
|
|---|
| 418 | G4double F10 = ScreenFunction1(screenmin) - FZ;
|
|---|
| 419 | G4double F20 = ScreenFunction2(screenmin) - FZ;
|
|---|
| 420 | G4double NormF1 = max(F10*epsilrange*epsilrange,0.);
|
|---|
| 421 | G4double NormF2 = max(1.5*F20,0.);
|
|---|
| 422 |
|
|---|
| 423 | do {
|
|---|
| 424 | if ( NormF1/(NormF1+NormF2) > G4UniformRand() ) {
|
|---|
| 425 | epsil = 0.5 - epsilrange*pow(G4UniformRand(), 0.333333);
|
|---|
| 426 | screenvar = screenfac/(epsil*(1-epsil));
|
|---|
| 427 | if (fLPMflag && GammaEnergy>100.*GeV) {
|
|---|
| 428 | CalcLPMFunctions(GammaEnergy,GammaEnergy*epsil);
|
|---|
| 429 | greject = xiLPM*((gLPM+2.*phiLPM)*Phi1(screenvar) - gLPM*Phi2(screenvar) - phiLPM*FZ)/F10;
|
|---|
| 430 | }
|
|---|
| 431 | else {
|
|---|
| 432 | greject = (ScreenFunction1(screenvar) - FZ)/F10;
|
|---|
| 433 | }
|
|---|
| 434 |
|
|---|
| 435 | } else {
|
|---|
| 436 | epsil = epsilmin + epsilrange*G4UniformRand();
|
|---|
| 437 | screenvar = screenfac/(epsil*(1-epsil));
|
|---|
| 438 | if (fLPMflag && GammaEnergy>100.*GeV) {
|
|---|
| 439 | CalcLPMFunctions(GammaEnergy,GammaEnergy*epsil);
|
|---|
| 440 | greject = xiLPM*((0.5*gLPM+phiLPM)*Phi1(screenvar) + 0.5*gLPM*Phi2(screenvar) - 0.5*(gLPM+phiLPM)*FZ)/F20;
|
|---|
| 441 | }
|
|---|
| 442 | else {
|
|---|
| 443 | greject = (ScreenFunction2(screenvar) - FZ)/F20;
|
|---|
| 444 | }
|
|---|
| 445 | }
|
|---|
| 446 |
|
|---|
| 447 | } while( greject < G4UniformRand() );
|
|---|
| 448 |
|
|---|
| 449 | } // end of epsil sampling
|
|---|
| 450 |
|
|---|
| 451 | //
|
|---|
| 452 | // fixe charges randomly
|
|---|
| 453 | //
|
|---|
| 454 |
|
|---|
| 455 | G4double ElectTotEnergy, PositTotEnergy;
|
|---|
| 456 | if (G4UniformRand() > 0.5) {
|
|---|
| 457 |
|
|---|
| 458 | ElectTotEnergy = (1.-epsil)*GammaEnergy;
|
|---|
| 459 | PositTotEnergy = epsil*GammaEnergy;
|
|---|
| 460 |
|
|---|
| 461 | } else {
|
|---|
| 462 |
|
|---|
| 463 | PositTotEnergy = (1.-epsil)*GammaEnergy;
|
|---|
| 464 | ElectTotEnergy = epsil*GammaEnergy;
|
|---|
| 465 | }
|
|---|
| 466 |
|
|---|
| 467 | //
|
|---|
| 468 | // scattered electron (positron) angles. ( Z - axis along the parent photon)
|
|---|
| 469 | //
|
|---|
| 470 | // universal distribution suggested by L. Urban
|
|---|
| 471 | // (Geant3 manual (1993) Phys211),
|
|---|
| 472 | // derived from Tsai distribution (Rev Mod Phys 49,421(1977))
|
|---|
| 473 |
|
|---|
| 474 | G4double u;
|
|---|
| 475 | const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ;
|
|---|
| 476 |
|
|---|
| 477 | if (9./(9.+d) >G4UniformRand()) u= - log(G4UniformRand()*G4UniformRand())/a1;
|
|---|
| 478 | else u= - log(G4UniformRand()*G4UniformRand())/a2;
|
|---|
| 479 |
|
|---|
| 480 | G4double TetEl = u*electron_mass_c2/ElectTotEnergy;
|
|---|
| 481 | G4double TetPo = u*electron_mass_c2/PositTotEnergy;
|
|---|
| 482 | G4double Phi = twopi * G4UniformRand();
|
|---|
| 483 | G4double dxEl= sin(TetEl)*cos(Phi),dyEl= sin(TetEl)*sin(Phi),dzEl=cos(TetEl);
|
|---|
| 484 | G4double dxPo=-sin(TetPo)*cos(Phi),dyPo=-sin(TetPo)*sin(Phi),dzPo=cos(TetPo);
|
|---|
| 485 |
|
|---|
| 486 | //
|
|---|
| 487 | // kinematic of the created pair
|
|---|
| 488 | //
|
|---|
| 489 | // the electron and positron are assumed to have a symetric
|
|---|
| 490 | // angular distribution with respect to the Z axis along the parent photon.
|
|---|
| 491 |
|
|---|
| 492 | G4double ElectKineEnergy = max(0.,ElectTotEnergy - electron_mass_c2);
|
|---|
| 493 |
|
|---|
| 494 | G4ThreeVector ElectDirection (dxEl, dyEl, dzEl);
|
|---|
| 495 | ElectDirection.rotateUz(GammaDirection);
|
|---|
| 496 |
|
|---|
| 497 | // create G4DynamicParticle object for the particle1
|
|---|
| 498 | G4DynamicParticle* aParticle1= new G4DynamicParticle(
|
|---|
| 499 | theElectron,ElectDirection,ElectKineEnergy);
|
|---|
| 500 |
|
|---|
| 501 | // the e+ is always created (even with Ekine=0) for further annihilation.
|
|---|
| 502 |
|
|---|
| 503 | G4double PositKineEnergy = max(0.,PositTotEnergy - electron_mass_c2);
|
|---|
| 504 |
|
|---|
| 505 | G4ThreeVector PositDirection (dxPo, dyPo, dzPo);
|
|---|
| 506 | PositDirection.rotateUz(GammaDirection);
|
|---|
| 507 |
|
|---|
| 508 | // create G4DynamicParticle object for the particle2
|
|---|
| 509 | G4DynamicParticle* aParticle2= new G4DynamicParticle(
|
|---|
| 510 | thePositron,PositDirection,PositKineEnergy);
|
|---|
| 511 |
|
|---|
| 512 | // Fill output vector
|
|---|
| 513 | fvect->push_back(aParticle1);
|
|---|
| 514 | fvect->push_back(aParticle2);
|
|---|
| 515 |
|
|---|
| 516 | // kill incident photon
|
|---|
| 517 | fParticleChange->SetProposedKineticEnergy(0.);
|
|---|
| 518 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 519 | }
|
|---|
| 520 |
|
|---|
| 521 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 522 |
|
|---|
| 523 |
|
|---|
| 524 | void G4PairProductionRelModel::SetupForMaterial(const G4ParticleDefinition*,
|
|---|
| 525 | const G4Material* mat, G4double)
|
|---|
| 526 | {
|
|---|
| 527 | lpmEnergy = mat->GetRadlen()*fLPMconstant;
|
|---|
| 528 | // G4cout<<" lpmEnergy="<<lpmEnergy<<G4endl;
|
|---|
| 529 | }
|
|---|
| 530 |
|
|---|
| 531 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|