source: trunk/source/processes/electromagnetic/standard/src/G4UrbanMscModel.cc@ 1036

Last change on this file since 1036 was 1007, checked in by garnier, 17 years ago

update to geant4.9.2

File size: 39.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4UrbanMscModel.cc,v 1.86 2008/10/29 14:15:30 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-02 $
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class file
32//
33//
34// File name: G4UrbanMscModel
35//
36// Author: Laszlo Urban
37//
38// Creation date: 03.03.2001
39//
40// Modifications:
41//
42// 27-03-03 Move model part from G4MultipleScattering80 (V.Ivanchenko)
43// 23-05-03 important change in angle distribution for muons/hadrons
44// the central part now is similar to the Highland parametrization +
45// minor correction in angle sampling algorithm (for all particles)
46// (L.Urban)
47// 30-05-03 misprint in SampleCosineTheta corrected(L.Urban)
48// 27-03-03 Rename (V.Ivanchenko)
49// 05-08-03 angle distribution has been modified (L.Urban)
50// 06-11-03 precision problems solved for high energy (PeV) particles
51// change in the tail of the angular distribution
52// highKinEnergy is set to 100 PeV (L.Urban)
53//
54// 10-11-03 highKinEnergy is set back to 100 TeV, some tail tuning +
55// cleaning (L.Urban)
56// 26-11-03 correction in TrueStepLength :
57// trueLength <= currentRange (L.Urban)
58// 01-03-04 signature changed in SampleCosineTheta,
59// energy dependence calculations has been simplified,
60// 11-03-04 corrections in GeomPathLength,TrueStepLength,
61// SampleCosineTheta
62// 23-04-04 true -> geom and geom -> true transformation has been
63// rewritten, changes in the angular distribution (L.Urban)
64// 19-07-04 correction in SampleCosineTheta in order to avoid
65// num. precision problems at high energy/small step(L.Urban)
66// 17-08-04 changes in the angle distribution (slightly modified
67// Highland formula for the width of the central part,
68// changes in the numerical values of some other parameters)
69// ---> approximately step independent distribution (L.Urban)
70// 21-09-04 change in the tail of the angular distribution (L.Urban)
71//
72// 03-11-04 precision problem for very high energy ions and small stepsize
73// solved in SampleCosineTheta (L.Urban).
74// 15-04-05 optimize internal interface
75// add SampleSecondaries method (V.Ivanchenko)
76// 11-08-05 computation of lateral correlation added (L.Urban)
77// 02-10-05 nuclear size correction computation removed, the correction
78// included in the (theoretical) tabulated values (L.Urban)
79// 17-01-06 computation of tail changed in SampleCosineTheta (l.Urban)
80// 16-02-06 code cleaning + revised 'z' sampling (L.Urban)
81// 17-02-06 Save table of transport cross sections not mfp (V.Ivanchenko)
82// 07-03-06 Create G4UrbanMscModel and move there step limit
83// calculation (V.Ivanchenko)
84// 23-03-06 Bugfix in SampleCosineTheta method (L.Urban)
85// 10-05-06 SetMscStepLimitation at initialisation (V.Ivantchenko)
86// 11-05-06 name of data member safety changed to presafety, some new data
87// members added (frscaling1,frscaling2,tlimitminfix,nstepmax)
88// changes in ComputeTruePathLengthLimit,SampleCosineTheta (L.Urban)
89// 17-05-06 parameters of theta0 in SampleCosineTheta changed
90// c_highland 13.6*MeV ---> 13.26*MeV,
91// corr_highland 0.555 ---> 0.54,
92// value of data member geommin changed (5 nm -> 1 nm) (L.Urban)
93// 13-10-06 data member factail removed, data member tkinlimit changed
94// to lambdalimit,
95// new data members tgeom,tnow,skin,skindepth,Zeff,geomlimit
96// G4double GeomLimit(const G4Track& track) changed to
97// void GeomLimit(const G4Track& track)
98// - important changes in ComputeTruePathLengthLimit:
99// possibility to have very small step(s) with single scattering
100// before boundary crossing (with skin > 0)
101// - changes in SampleCosineTheta :
102// single scattering if step <= stepmin, parameter theta0
103// slightly modified, tail modified (L.Urban)
104// 20-10-06 parameter theta0 now computed in the (public)
105// function ComputeTheta0,
106// single scattering modified allowing not small
107// angles as well (L.Urban)
108// 23-10-06 correction in SampleSecondaries, now safety update
109// computed in a simpler/faster way (L.Urban)
110// 06-11-06 corrections in ComputeTruePathLengthLimit, results are
111// more stable in calorimeters (L.Urban)
112// 07-11-06 fix in GeomPathLength and SampleCosineTheta (L.Urban)
113// 15-11-06 bugfix in SampleCosineTheta (L.Urban)
114// 20-11-06 bugfix in single scattering part of SampleCosineTheta,
115// single scattering just before boundary crossing now (L.Urban)
116// 04-12-06 fix in ComputeTruePathLengthLimit (L.Urban)
117// 17-01-07 remove LocatePoint from GeomLimit method (V.Ivanchenko)
118// 19-01-07 fix of true < geom problem (L.Urban)
119// 25-01-07 add protections from NaN vaues and for zero geometry step (VI)
120// 31-01-07 correction in SampleCosineTheta: screening parameter
121// corrected in single/plural scattering +
122// code cleaning (L.Urban)
123// 01-02-07 restore logic inside ComputeTrueStepLength (V.Ivanchenko)
124// 06-02-07 Move SetMscStepLimitation method into the source, add there
125// reinitialisation of some private members, add protection inside
126// SampleDisplacement(VI)
127// 07-02-07 fix single scattering for heavy particles, now skin=1 can be used
128// for heavy particles as well (L.Urban)
129// 08-02-07 randomization of tlimit removed (L.Urban)
130// 11-02-07 modified stepping algorithm for skin=0
131// 15-02-07 new data member: smallstep, small steps with single scattering
132// before + after boundary for skin > 1
133// 23-02-07 use tPathLength inside ComputeStep instead of geombig
134// 24-02-07 step reduction before boundary for 'small' geomlimit only
135// 03-03-07 single scattering around boundaries only (L.Urban)
136// 07-03-07 bugfix in ComputeTruePathLengthLimit (for skin > 0.) (L.Urban)
137// 10-04-07 optimize logic of ComputeTruePathLengthLimit, remove
138// unused members, use unique G4SafetyHelper (V.Ivanchenko)
139// 01-05-07 optimization for skin > 0 (L.Urban)
140// 05-07-07 modified model functions in SampleCosineTheta (L.Urban)
141// 06-07-07 theta0 is not the same for e-/e+ as for heavy particles (L.Urban)
142// 02-08-07 compare safety not with 0. but with tlimitminfix (V.Ivanchenko)
143// 09-08-07 tail of angular distribution has been modified (L.Urban)
144// 22-10-07 - corr. in ComputeGeomPathLength in order to get better low
145// energy behaviour for heavy particles,
146// - theta0 is slightly modified,
147// - some old inconsistency/bug is cured in SampleCosineTheta,
148// now 0 <= prob <= 1 in any case (L.Urban)
149// 26-10-07 different correction parameters for e/mu/hadrons in ComputeTheta0
150// 30-11-07 fix in ComputeTheta0 (L.Urban)
151//
152
153// Class Description:
154//
155// Implementation of the model of multiple scattering based on
156// H.W.Lewis Phys Rev 78 (1950) 526 and others
157
158// -------------------------------------------------------------------
159//
160
161
162//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
163//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
164
165#include "G4UrbanMscModel.hh"
166#include "Randomize.hh"
167#include "G4Electron.hh"
168
169#include "G4LossTableManager.hh"
170#include "G4ParticleChangeForMSC.hh"
171#include "G4TransportationManager.hh"
172#include "G4SafetyHelper.hh"
173
174#include "G4Poisson.hh"
175
176//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
177
178using namespace std;
179
180G4UrbanMscModel::G4UrbanMscModel(const G4String& nam)
181 : G4VMscModel(nam),
182 isInitialized(false)
183{
184 masslimite = 0.6*MeV;
185 masslimitmu = 110.*MeV;
186
187 taubig = 8.0;
188 tausmall = 1.e-16;
189 taulim = 1.e-6;
190 currentTau = taulim;
191 tlimitminfix = 1.e-6*mm;
192 stepmin = tlimitminfix;
193 smallstep = 1.e10;
194 currentRange = 0. ;
195 frscaling2 = 0.25;
196 frscaling1 = 1.-frscaling2;
197 tlimit = 1.e10*mm;
198 tlimitmin = 10.*tlimitminfix;
199 nstepmax = 25.;
200 geombig = 1.e50*mm;
201 geommin = 1.e-3*mm;
202 geomlimit = geombig;
203 presafety = 0.*mm;
204 Zeff = 1.;
205 particle = 0;
206 theManager = G4LossTableManager::Instance();
207 inside = false;
208 insideskin = false;
209
210}
211
212//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
213
214G4UrbanMscModel::~G4UrbanMscModel()
215{}
216
217//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
218
219void G4UrbanMscModel::Initialise(const G4ParticleDefinition* p,
220 const G4DataVector&)
221{
222 skindepth = skin*stepmin;
223 if(isInitialized) return;
224
225 // set values of some data members
226 SetParticle(p);
227
228 if (pParticleChange)
229 fParticleChange = reinterpret_cast<G4ParticleChangeForMSC*>(pParticleChange);
230 else
231 fParticleChange = new G4ParticleChangeForMSC();
232
233 safetyHelper = G4TransportationManager::GetTransportationManager()
234 ->GetSafetyHelper();
235 safetyHelper->InitialiseHelper();
236
237 isInitialized = true;
238}
239
240//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
241
242G4double G4UrbanMscModel::ComputeCrossSectionPerAtom(
243 const G4ParticleDefinition* part,
244 G4double KineticEnergy,
245 G4double AtomicNumber,G4double,
246 G4double, G4double)
247{
248 const G4double sigmafactor = twopi*classic_electr_radius*classic_electr_radius;
249 const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
250 Bohr_radius*Bohr_radius/(hbarc*hbarc);
251 const G4double epsmin = 1.e-4 , epsmax = 1.e10;
252
253 const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38., 47.,
254 50., 56., 64., 74., 79., 82. };
255
256 const G4double Tdat[22] = { 100*eV, 200*eV, 400*eV, 700*eV,
257 1*keV, 2*keV, 4*keV, 7*keV,
258 10*keV, 20*keV, 40*keV, 70*keV,
259 100*keV, 200*keV, 400*keV, 700*keV,
260 1*MeV, 2*MeV, 4*MeV, 7*MeV,
261 10*MeV, 20*MeV};
262
263 // corr. factors for e-/e+ lambda for T <= Tlim
264 G4double celectron[15][22] =
265 {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
266 1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
267 1.112,1.108,1.100,1.093,1.089,1.087 },
268 {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
269 1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
270 1.109,1.105,1.097,1.090,1.086,1.082 },
271 {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
272 1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
273 1.131,1.124,1.113,1.104,1.099,1.098 },
274 {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
275 1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
276 1.112,1.105,1.096,1.089,1.085,1.098 },
277 {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
278 1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
279 1.073,1.070,1.064,1.059,1.056,1.056 },
280 {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
281 1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
282 1.074,1.070,1.063,1.059,1.056,1.052 },
283 {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
284 1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
285 1.068,1.064,1.059,1.054,1.051,1.050 },
286 {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
287 1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
288 1.039,1.037,1.034,1.031,1.030,1.036 },
289 {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
290 1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
291 1.031,1.028,1.024,1.022,1.021,1.024 },
292 {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
293 1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
294 1.020,1.017,1.015,1.013,1.013,1.020 },
295 {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
296 1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
297 0.995,0.993,0.993,0.993,0.993,1.011 },
298 {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
299 1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
300 0.974,0.972,0.973,0.974,0.975,0.987 },
301 {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
302 1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
303 0.950,0.947,0.949,0.952,0.954,0.963 },
304 {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
305 1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
306 0.941,0.938,0.940,0.944,0.946,0.954 },
307 {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
308 1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
309 0.933,0.930,0.933,0.936,0.939,0.949 }};
310
311 G4double cpositron[15][22] = {
312 {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
313 1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
314 1.131,1.126,1.117,1.108,1.103,1.100 },
315 {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
316 1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
317 1.138,1.132,1.122,1.113,1.108,1.102 },
318 {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
319 1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
320 1.203,1.190,1.173,1.159,1.151,1.145 },
321 {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
322 1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
323 1.225,1.210,1.191,1.175,1.166,1.174 },
324 {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
325 1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
326 1.217,1.203,1.184,1.169,1.160,1.151 },
327 {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
328 1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
329 1.237,1.222,1.201,1.184,1.174,1.159 },
330 {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
331 1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
332 1.252,1.234,1.212,1.194,1.183,1.170 },
333 {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
334 2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
335 1.254,1.237,1.214,1.195,1.185,1.179 },
336 {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
337 2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
338 1.312,1.288,1.258,1.235,1.221,1.205 },
339 {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
340 2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
341 1.320,1.294,1.264,1.240,1.226,1.214 },
342 {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
343 2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
344 1.328,1.302,1.270,1.245,1.231,1.233 },
345 {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
346 2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
347 1.361,1.330,1.294,1.267,1.251,1.239 },
348 {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
349 3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
350 1.409,1.372,1.330,1.298,1.280,1.258 },
351 {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
352 3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
353 1.442,1.400,1.354,1.319,1.299,1.272 },
354 {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
355 3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
356 1.456,1.412,1.364,1.328,1.307,1.282 }};
357
358 //data/corrections for T > Tlim
359 G4double Tlim = 10.*MeV;
360 G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
361 ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
362 G4double bg2lim = Tlim*(Tlim+2.*electron_mass_c2)/
363 (electron_mass_c2*electron_mass_c2);
364
365 G4double sig0[15] = {0.2672*barn, 0.5922*barn, 2.653*barn, 6.235*barn,
366 11.69*barn , 13.24*barn , 16.12*barn, 23.00*barn ,
367 35.13*barn , 39.95*barn , 50.85*barn, 67.19*barn ,
368 91.15*barn , 104.4*barn , 113.1*barn};
369
370 G4double hecorr[15] = {120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
371 57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
372 -22.30};
373
374 G4double sigma;
375 SetParticle(part);
376
377 G4double Z23 = 2.*log(AtomicNumber)/3.; Z23 = exp(Z23);
378
379 // correction if particle .ne. e-/e+
380 // compute equivalent kinetic energy
381 // lambda depends on p*beta ....
382
383 G4double eKineticEnergy = KineticEnergy;
384
385 if(mass > electron_mass_c2)
386 {
387 G4double TAU = KineticEnergy/mass ;
388 G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
389 G4double w = c-2. ;
390 G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
391 eKineticEnergy = electron_mass_c2*tau ;
392 }
393
394 G4double ChargeSquare = charge*charge;
395
396 G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
397 G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
398 /(eTotalEnergy*eTotalEnergy);
399 G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
400 /(electron_mass_c2*electron_mass_c2);
401
402 G4double eps = epsfactor*bg2/Z23;
403
404 if (eps<epsmin) sigma = 2.*eps*eps;
405 else if(eps<epsmax) sigma = log(1.+2.*eps)-2.*eps/(1.+2.*eps);
406 else sigma = log(2.*eps)-1.+1./eps;
407
408 sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
409
410 // interpolate in AtomicNumber and beta2
411 G4double c1,c2,cc1,cc2,corr;
412
413 // get bin number in Z
414 G4int iZ = 14;
415 while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
416 if (iZ==14) iZ = 13;
417 if (iZ==-1) iZ = 0 ;
418
419 G4double Z1 = Zdat[iZ];
420 G4double Z2 = Zdat[iZ+1];
421 G4double ratZ = (AtomicNumber-Z1)*(AtomicNumber+Z1)/
422 ((Z2-Z1)*(Z2+Z1));
423
424 if(eKineticEnergy <= Tlim)
425 {
426 // get bin number in T (beta2)
427 G4int iT = 21;
428 while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
429 if(iT==21) iT = 20;
430 if(iT==-1) iT = 0 ;
431
432 // calculate betasquare values
433 G4double T = Tdat[iT], E = T + electron_mass_c2;
434 G4double b2small = T*(E+electron_mass_c2)/(E*E);
435
436 T = Tdat[iT+1]; E = T + electron_mass_c2;
437 G4double b2big = T*(E+electron_mass_c2)/(E*E);
438 G4double ratb2 = (beta2-b2small)/(b2big-b2small);
439
440 if (charge < 0.)
441 {
442 c1 = celectron[iZ][iT];
443 c2 = celectron[iZ+1][iT];
444 cc1 = c1+ratZ*(c2-c1);
445
446 c1 = celectron[iZ][iT+1];
447 c2 = celectron[iZ+1][iT+1];
448 cc2 = c1+ratZ*(c2-c1);
449
450 corr = cc1+ratb2*(cc2-cc1);
451
452 sigma *= sigmafactor/corr;
453 }
454 else
455 {
456 c1 = cpositron[iZ][iT];
457 c2 = cpositron[iZ+1][iT];
458 cc1 = c1+ratZ*(c2-c1);
459
460 c1 = cpositron[iZ][iT+1];
461 c2 = cpositron[iZ+1][iT+1];
462 cc2 = c1+ratZ*(c2-c1);
463
464 corr = cc1+ratb2*(cc2-cc1);
465
466 sigma *= sigmafactor/corr;
467 }
468 }
469 else
470 {
471 c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
472 c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
473 if((AtomicNumber >= Z1) && (AtomicNumber <= Z2))
474 sigma = c1+ratZ*(c2-c1) ;
475 else if(AtomicNumber < Z1)
476 sigma = AtomicNumber*AtomicNumber*c1/(Z1*Z1);
477 else if(AtomicNumber > Z2)
478 sigma = AtomicNumber*AtomicNumber*c2/(Z2*Z2);
479 }
480 return sigma;
481
482}
483
484//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
485
486G4double G4UrbanMscModel::ComputeTruePathLengthLimit(
487 const G4Track& track,
488 G4PhysicsTable* theTable,
489 G4double currentMinimalStep)
490{
491 tPathLength = currentMinimalStep;
492 const G4DynamicParticle* dp = track.GetDynamicParticle();
493 G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
494 G4StepStatus stepStatus = sp->GetStepStatus();
495
496 if(stepStatus == fUndefined) {
497 inside = false;
498 insideskin = false;
499 tlimit = geombig;
500 SetParticle( dp->GetDefinition() );
501 }
502
503 theLambdaTable = theTable;
504 couple = track.GetMaterialCutsCouple();
505 currentMaterialIndex = couple->GetIndex();
506 currentKinEnergy = dp->GetKineticEnergy();
507 currentRange =
508 theManager->GetRangeFromRestricteDEDX(particle,currentKinEnergy,couple);
509 lambda0 = GetLambda(currentKinEnergy);
510
511 // stop here if small range particle
512 if(inside) return tPathLength;
513
514 if(tPathLength > currentRange) tPathLength = currentRange;
515
516 presafety = sp->GetSafety();
517
518 // G4cout << "G4UrbanMscModel::ComputeTruePathLengthLimit tPathLength= "
519 // <<tPathLength<<" safety= " << presafety
520 // << " range= " <<currentRange<<G4endl;
521
522 // far from geometry boundary
523 if(currentRange < presafety)
524 {
525 inside = true;
526 return tPathLength;
527 }
528
529 // standard version
530 //
531 if (steppingAlgorithm == fUseDistanceToBoundary)
532 {
533 //compute geomlimit and presafety
534 GeomLimit(track);
535
536 // is far from boundary
537 if(currentRange <= presafety)
538 {
539 inside = true;
540 return tPathLength;
541 }
542
543 smallstep += 1.;
544 insideskin = false;
545
546 if((stepStatus == fGeomBoundary) || (stepStatus == fUndefined))
547 {
548 if(stepStatus == fUndefined) smallstep = 1.e10;
549 else smallstep = 1.;
550
551 // facrange scaling in lambda
552 // not so strong step restriction above lambdalimit
553 G4double facr = facrange;
554 if(lambda0 > lambdalimit)
555 facr *= frscaling1+frscaling2*lambda0/lambdalimit;
556
557 // constraint from the physics
558 if (currentRange > lambda0) tlimit = facr*currentRange;
559 else tlimit = facr*lambda0;
560
561 if(tlimit > currentRange) tlimit = currentRange;
562
563 //define stepmin here (it depends on lambda!)
564 //rough estimation of lambda_elastic/lambda_transport
565 G4double rat = currentKinEnergy/MeV ;
566 rat = 1.e-3/(rat*(10.+rat)) ;
567 //stepmin ~ lambda_elastic
568 stepmin = rat*lambda0;
569 skindepth = skin*stepmin;
570
571 //define tlimitmin
572 tlimitmin = 10.*stepmin;
573 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
574
575 //lower limit for tlimit
576 if(tlimit < tlimitmin) tlimit = tlimitmin;
577
578 // constraint from the geometry (if tlimit above is too big)
579 G4double tgeom = geombig;
580
581 if((geomlimit < geombig) && (geomlimit > geommin))
582 {
583 if(stepStatus == fGeomBoundary)
584 tgeom = geomlimit/facgeom;
585 else
586 tgeom = 2.*geomlimit/facgeom;
587
588 if(tlimit > tgeom) tlimit = tgeom;
589 }
590 }
591
592 //if track starts far from boundaries increase tlimit!
593 if(tlimit < facsafety*presafety) tlimit = facsafety*presafety ;
594
595 // G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
596 // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
597
598 // shortcut
599 if((tPathLength < tlimit) && (tPathLength < presafety))
600 return tPathLength;
601
602 G4double tnow = tlimit;
603 // optimization ...
604 if(geomlimit < geombig) tnow = max(tlimit,facsafety*geomlimit);
605
606 // step reduction near to boundary
607 if(smallstep < skin)
608 {
609 tnow = stepmin;
610 insideskin = true;
611 }
612 else if(geomlimit < geombig)
613 {
614 if(geomlimit > skindepth)
615 {
616 if(tnow > geomlimit-0.999*skindepth)
617 tnow = geomlimit-0.999*skindepth;
618 }
619 else
620 {
621 insideskin = true;
622 if(tnow > stepmin) tnow = stepmin;
623 }
624 }
625
626 if(tnow < stepmin) tnow = stepmin;
627
628 if(tPathLength > tnow) tPathLength = tnow ;
629 }
630 // for 'normal' simulation with or without magnetic field
631 // there no small step/single scattering at boundaries
632 else if(steppingAlgorithm == fUseSafety)
633 {
634 // compute presafety again if presafety <= 0 and no boundary
635 // i.e. when it is needed for optimization purposes
636 if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix))
637 presafety = safetyHelper->ComputeSafety(sp->GetPosition());
638
639 // is far from boundary
640 if(currentRange < presafety)
641 {
642 inside = true;
643 return tPathLength;
644 }
645
646 if((stepStatus == fGeomBoundary) || (stepStatus == fUndefined))
647 {
648 // facrange scaling in lambda
649 // not so strong step restriction above lambdalimit
650 G4double facr = facrange;
651 if(lambda0 > lambdalimit)
652 facr *= frscaling1+frscaling2*lambda0/lambdalimit;
653
654 // constraint from the physics
655 if (currentRange > lambda0) tlimit = facr*currentRange;
656 else tlimit = facr*lambda0;
657
658 //lower limit for tlimit
659 tlimitmin = std::max(tlimitminfix,lambda0/nstepmax);
660 if(tlimit < tlimitmin) tlimit = tlimitmin;
661 }
662
663 //if track starts far from boundaries increase tlimit!
664 if(tlimit < facsafety*presafety) tlimit = facsafety*presafety ;
665
666 if(tPathLength > tlimit) tPathLength = tlimit;
667 }
668
669 // version similar to 7.1 (needed for some experiments)
670 else
671 {
672 if (stepStatus == fGeomBoundary)
673 {
674 if (currentRange > lambda0) tlimit = facrange*currentRange;
675 else tlimit = facrange*lambda0;
676
677 if(tlimit < tlimitmin) tlimit = tlimitmin;
678 if(tPathLength > tlimit) tPathLength = tlimit;
679 }
680 }
681 // G4cout << "tPathLength= " << tPathLength << " geomlimit= " << geomlimit
682 // << " currentMinimalStep= " << currentMinimalStep << G4endl;
683
684 return tPathLength ;
685}
686
687//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
688
689void G4UrbanMscModel::GeomLimit(const G4Track& track)
690{
691 geomlimit = geombig;
692
693 // no geomlimit for the World volume
694 if((track.GetVolume() != 0) &&
695 (track.GetVolume() != safetyHelper->GetWorldVolume()))
696 {
697 G4double cstep = currentRange;
698
699 geomlimit = safetyHelper->CheckNextStep(
700 track.GetStep()->GetPreStepPoint()->GetPosition(),
701 track.GetMomentumDirection(),
702 cstep,
703 presafety);
704 // G4cout << "!!!G4UrbanMscModel::GeomLimit presafety= " << presafety
705 // << " limit= " << geomlimit << G4endl;
706 }
707}
708
709//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
710
711G4double G4UrbanMscModel::ComputeGeomPathLength(G4double)
712{
713 lambdaeff = lambda0;
714 par1 = -1. ;
715 par2 = par3 = 0. ;
716
717 // do the true -> geom transformation
718 zPathLength = tPathLength;
719
720 // z = t for very small tPathLength
721 if(tPathLength < tlimitminfix) return zPathLength;
722
723 // this correction needed to run MSC with eIoni and eBrem inactivated
724 // and makes no harm for a normal run
725 if(tPathLength > currentRange)
726 tPathLength = currentRange ;
727
728 G4double tau = tPathLength/lambda0 ;
729
730 if ((tau <= tausmall) || insideskin) {
731 zPathLength = tPathLength;
732 if(zPathLength > lambda0) zPathLength = lambda0;
733 return zPathLength;
734 }
735
736 G4double zmean = tPathLength;
737 if (tPathLength < currentRange*dtrl) {
738 if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
739 else zmean = lambda0*(1.-exp(-tau));
740 } else if(currentKinEnergy < mass) {
741 par1 = 1./currentRange ;
742 par2 = 1./(par1*lambda0) ;
743 par3 = 1.+par2 ;
744 if(tPathLength < currentRange)
745 zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ;
746 else
747 zmean = 1./(par1*par3) ;
748 } else {
749 G4double T1 = theManager->GetEnergy(particle,currentRange-tPathLength,couple);
750 G4double lambda1 = GetLambda(T1);
751
752 par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
753 par2 = 1./(par1*lambda0) ;
754 par3 = 1.+par2 ;
755 zmean = (1.-exp(par3*log(lambda1/lambda0)))/(par1*par3) ;
756 }
757
758 zPathLength = zmean ;
759
760 // sample z
761 if(samplez)
762 {
763 const G4double ztmax = 0.99, onethird = 1./3. ;
764 G4double zt = zmean/tPathLength ;
765
766 if (tPathLength > stepmin && zt < ztmax)
767 {
768 G4double u,cz1;
769 if(zt >= onethird)
770 {
771 G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
772 cz1 = 1.+cz ;
773 G4double u0 = cz/cz1 ;
774 G4double grej ;
775 do {
776 u = exp(log(G4UniformRand())/cz1) ;
777 grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ;
778 } while (grej < G4UniformRand()) ;
779 }
780 else
781 {
782 cz1 = 1./zt-1.;
783 u = 1.-exp(log(G4UniformRand())/cz1) ;
784 }
785 zPathLength = tPathLength*u ;
786 }
787 }
788
789 if(zPathLength > lambda0) zPathLength = lambda0;
790
791 return zPathLength;
792}
793
794//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
795
796G4double G4UrbanMscModel::ComputeTrueStepLength(G4double geomStepLength)
797{
798 // step defined other than transportation
799 if(geomStepLength == zPathLength && tPathLength <= currentRange)
800 return tPathLength;
801
802 // t = z for very small step
803 zPathLength = geomStepLength;
804 tPathLength = geomStepLength;
805 if(geomStepLength < tlimitminfix) return tPathLength;
806
807 // recalculation
808 if((geomStepLength > lambda0*tausmall) && !insideskin)
809 {
810 if(par1 < 0.)
811 tPathLength = -lambda0*log(1.-geomStepLength/lambda0) ;
812 else
813 {
814 if(par1*par3*geomStepLength < 1.)
815 tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ;
816 else
817 tPathLength = currentRange;
818 }
819 }
820 if(tPathLength < geomStepLength) tPathLength = geomStepLength;
821
822 return tPathLength;
823}
824
825//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
826
827G4double G4UrbanMscModel::ComputeTheta0(G4double trueStepLength,
828 G4double KineticEnergy)
829{
830 // for all particles take the width of the central part
831 // from a parametrization similar to the Highland formula
832 // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
833 const G4double c_highland = 13.6*MeV ;
834 G4double betacp = sqrt(currentKinEnergy*(currentKinEnergy+2.*mass)*
835 KineticEnergy*(KineticEnergy+2.*mass)/
836 ((currentKinEnergy+mass)*(KineticEnergy+mass)));
837 G4double y = trueStepLength/currentRadLength;
838 G4double theta0 = c_highland*std::abs(charge)*sqrt(y)/betacp;
839 y = log(y);
840 if(mass < masslimite)
841 theta0 *= (1.+0.051*y);
842 else if(mass < masslimitmu)
843 theta0 *= (1.+0.044*y);
844 else
845 theta0 *= (1.+0.038*y);
846
847 return theta0;
848}
849
850//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
851
852void G4UrbanMscModel::SampleScattering(const G4DynamicParticle* dynParticle,
853 G4double safety)
854{
855 G4double kineticEnergy = dynParticle->GetKineticEnergy();
856 if((kineticEnergy <= 0.0) || (tPathLength <= tlimitminfix) ||
857 (tPathLength/tausmall < lambda0) ) return;
858
859 G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
860 // protection against 'bad' cth values
861 if(abs(cth) > 1.) return;
862
863 G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
864 G4double phi = twopi*G4UniformRand();
865 G4double dirx = sth*cos(phi);
866 G4double diry = sth*sin(phi);
867
868 G4ThreeVector oldDirection = dynParticle->GetMomentumDirection();
869 G4ThreeVector newDirection(dirx,diry,cth);
870 newDirection.rotateUz(oldDirection);
871 fParticleChange->ProposeMomentumDirection(newDirection);
872
873 if (latDisplasment && safety > tlimitminfix) {
874
875 G4double r = SampleDisplacement();
876/*
877 G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
878 << " sinTheta= " << sth << " r(mm)= " << r
879 << " trueStep(mm)= " << tPathLength
880 << " geomStep(mm)= " << zPathLength
881 << G4endl;
882*/
883 if(r > 0.)
884 {
885 G4double latcorr = LatCorrelation();
886 if(latcorr > r) latcorr = r;
887
888 // sample direction of lateral displacement
889 // compute it from the lateral correlation
890 G4double Phi = 0.;
891 if(std::abs(r*sth) < latcorr) {
892 Phi = twopi*G4UniformRand();
893 } else {
894 G4double psi = std::acos(latcorr/(r*sth));
895 if(G4UniformRand() < 0.5) Phi = phi+psi;
896 else Phi = phi-psi;
897 }
898
899 dirx = std::cos(Phi);
900 diry = std::sin(Phi);
901
902 G4ThreeVector latDirection(dirx,diry,0.0);
903 latDirection.rotateUz(oldDirection);
904
905 G4ThreeVector Position = *(fParticleChange->GetProposedPosition());
906 G4double fac = 1.;
907 if(r > safety) {
908 // ******* so safety is computed at boundary too ************
909 G4double newsafety = safetyHelper->ComputeSafety(Position);
910 if(r > newsafety)
911 fac = newsafety/r ;
912 }
913
914 if(fac > 0.)
915 {
916 // compute new endpoint of the Step
917 G4ThreeVector newPosition = Position+fac*r*latDirection;
918
919 // definitely not on boundary
920 if(1. == fac) {
921 safetyHelper->ReLocateWithinVolume(newPosition);
922
923 } else {
924 // check safety after displacement
925 G4double postsafety = safetyHelper->ComputeSafety(newPosition);
926
927 // displacement to boundary
928 // if(postsafety < tlimitminfix) {
929 if(postsafety <= 0.0) {
930 safetyHelper->Locate(newPosition, newDirection);
931
932 // not on the boundary
933 } else {
934 safetyHelper->ReLocateWithinVolume(newPosition);
935 }
936 }
937 fParticleChange->ProposePosition(newPosition);
938 }
939 }
940 }
941}
942
943//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
944
945G4double G4UrbanMscModel::SampleCosineTheta(G4double trueStepLength,
946 G4double KineticEnergy)
947{
948 G4double cth = 1. ;
949 G4double tau = trueStepLength/lambda0 ;
950
951 Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
952 couple->GetMaterial()->GetTotNbOfAtomsPerVolume() ;
953
954 if(insideskin)
955 {
956 //no scattering, single or plural scattering
957 G4double mean = trueStepLength/stepmin ;
958
959 G4int n = G4Poisson(mean);
960 if(n > 0)
961 {
962 G4double tm = KineticEnergy/electron_mass_c2;
963 // ascr - screening parameter
964 G4double ascr = exp(log(Zeff)/3.)/(137.*sqrt(tm*(tm+2.)));
965 G4double ascr1 = 1.+0.5*ascr*ascr;
966 G4double bp1=ascr1+1.;
967 G4double bm1=ascr1-1.;
968 // single scattering from screened Rutherford x-section
969 G4double ct,st,phi;
970 G4double sx=0.,sy=0.,sz=0.;
971 for(G4int i=1; i<=n; i++)
972 {
973 ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
974 if(ct < -1.) ct = -1.;
975 if(ct > 1.) ct = 1.;
976 st = sqrt(1.-ct*ct);
977 phi = twopi*G4UniformRand();
978 sx += st*cos(phi);
979 sy += st*sin(phi);
980 sz += ct;
981 }
982 cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
983 }
984 }
985 else
986 {
987 if(trueStepLength >= currentRange*dtrl)
988 {
989 if(par1*trueStepLength < 1.)
990 tau = -par2*log(1.-par1*trueStepLength) ;
991 // for the case if ioni/brems are inactivated
992 // see the corresponding condition in ComputeGeomPathLength
993 else if(1.-KineticEnergy/currentKinEnergy > taulim)
994 tau = taubig ;
995 }
996 currentTau = tau ;
997 lambdaeff = trueStepLength/currentTau;
998 currentRadLength = couple->GetMaterial()->GetRadlen();
999
1000 if (tau >= taubig) cth = -1.+2.*G4UniformRand();
1001 else if (tau >= tausmall)
1002 {
1003 G4double b=2.,bp1=3.,bm1=1.;
1004 G4double prob = 0. ;
1005 G4double a = 1., ea = 0., eaa = 1.;
1006 G4double xmean1 = 1., xmean2 = 0.;
1007
1008 G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
1009
1010 // protexction for very small angles
1011 if(theta0 < tausmall) return cth;
1012
1013 G4double sth = sin(0.5*theta0);
1014 a = 0.25/(sth*sth);
1015
1016 ea = exp(-2.*a);
1017 eaa = 1.-ea ;
1018 xmean1 = (1.+ea)/eaa-1./a;
1019
1020 G4double xmeanth = exp(-tau);
1021 b = 1./xmeanth ;
1022 bp1 = b+1.;
1023 bm1 = b-1.;
1024 // protection
1025 if(bm1 > 0.)
1026 xmean2 = b-0.5*bp1*bm1*log(bp1/bm1);
1027 else
1028 {
1029 b = 1.+tau;
1030 bp1 = 2.+tau;
1031 bm1 = tau;
1032 xmean2 = 1.+tau*(1.-log(2./tau));
1033 }
1034
1035 if((xmean1 >= xmeanth) && (xmean2 <= xmeanth))
1036 {
1037 //normal case
1038 prob = (xmeanth-xmean2)/(xmean1-xmean2);
1039 }
1040 else
1041 {
1042 // x1 < xth ( x2 < xth automatically if b = 1/xth)
1043 // correct a (xmean1)
1044 if((xmeanth-xmean1)/xmeanth < 1.e-5)
1045 {
1046 // xmean1 is small probably due to precision problems
1047 xmean1 = 0.50*(1.+xmeanth);
1048 prob = (xmeanth-xmean2)/(xmean1-xmean2);
1049 }
1050 else
1051 {
1052 // correct a in order to have x1=xth
1053 G4int i=0, imax=10;
1054 do
1055 {
1056 a = 1./(1.-xmeanth+2.*ea/eaa);
1057 ea = exp(-2.*a);
1058 eaa = 1.-ea;
1059 xmean1 = (1.+ea)/eaa-1./a;
1060 i += 1;
1061 } while ((std::abs((xmeanth-xmean1)/xmeanth) > 0.05) && (i < imax));
1062 prob = 1.;
1063 }
1064 }
1065
1066 // sampling of costheta
1067 if (G4UniformRand() < prob)
1068 cth = 1.+log(ea+G4UniformRand()*eaa)/a ;
1069 else
1070 cth = b-bp1*bm1/(bm1+2.*G4UniformRand()) ;
1071 }
1072 }
1073 return cth ;
1074}
1075
1076//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1077
1078G4double G4UrbanMscModel::SampleDisplacement()
1079{
1080 const G4double kappa = 2.5;
1081 const G4double kappapl1 = kappa+1.;
1082 const G4double kappami1 = kappa-1.;
1083 G4double rmean = 0.0;
1084 if ((currentTau >= tausmall) && !insideskin) {
1085 if (currentTau < taulim) {
1086 rmean = kappa*currentTau*currentTau*currentTau*
1087 (1.-kappapl1*currentTau*0.25)/6. ;
1088
1089 } else {
1090 G4double etau = 0.0;
1091 if (currentTau<taubig) etau = exp(-currentTau);
1092 rmean = -kappa*currentTau;
1093 rmean = -exp(rmean)/(kappa*kappami1);
1094 rmean += currentTau-kappapl1/kappa+kappa*etau/kappami1;
1095 }
1096 if (rmean>0.) rmean = 2.*lambdaeff*sqrt(rmean/3.0);
1097 else rmean = 0.;
1098 }
1099
1100 // protection against z > t ...........................
1101 if(rmean > 0.) {
1102 G4double zt = (tPathLength-zPathLength)*(tPathLength+zPathLength);
1103 if(zt <= 0.)
1104 rmean = 0.;
1105 else if(rmean*rmean > zt)
1106 rmean = sqrt(zt);
1107 }
1108 return rmean;
1109}
1110
1111//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1112
1113G4double G4UrbanMscModel::LatCorrelation()
1114{
1115 const G4double kappa = 2.5;
1116 const G4double kappami1 = kappa-1.;
1117
1118 G4double latcorr = 0.;
1119 if((currentTau >= tausmall) && !insideskin)
1120 {
1121 if(currentTau < taulim)
1122 latcorr = lambdaeff*kappa*currentTau*currentTau*
1123 (1.-(kappa+1.)*currentTau/3.)/3.;
1124 else
1125 {
1126 G4double etau = 0.;
1127 if(currentTau < taubig) etau = exp(-currentTau);
1128 latcorr = -kappa*currentTau;
1129 latcorr = exp(latcorr)/kappami1;
1130 latcorr += 1.-kappa*etau/kappami1 ;
1131 latcorr *= 2.*lambdaeff/3. ;
1132 }
1133 }
1134
1135 return latcorr;
1136}
1137
1138//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1139
1140void G4UrbanMscModel::SampleSecondaries(std::vector<G4DynamicParticle*>*,
1141 const G4MaterialCutsCouple*,
1142 const G4DynamicParticle*,
1143 G4double,
1144 G4double)
1145{}
1146
1147//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
Note: See TracBrowser for help on using the repository browser.