| [968] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| [1315] | 26 | // $Id: G4WentzelVIModel.cc,v 1.60 2010/06/01 11:13:31 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
|
|---|
| [968] | 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4WentzelVIModel
|
|---|
| 35 | //
|
|---|
| 36 | // Author: V.Ivanchenko
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 09.04.2008 from G4MuMscModel
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| [1315] | 41 | // 27-05-2010 V.Ivanchenko added G4WentzelOKandVIxSection class to
|
|---|
| 42 | // compute cross sections and sample scattering angle
|
|---|
| [968] | 43 | //
|
|---|
| 44 | //
|
|---|
| 45 | // Class Description:
|
|---|
| 46 | //
|
|---|
| 47 | // Implementation of the model of multiple scattering based on
|
|---|
| 48 | // G.Wentzel, Z. Phys. 40 (1927) 590.
|
|---|
| 49 | // H.W.Lewis, Phys Rev 78 (1950) 526.
|
|---|
| 50 | // J.M. Fernandez-Varea et al., NIM B73 (1993) 447.
|
|---|
| 51 | // L.Urban, CERN-OPEN-2006-077.
|
|---|
| 52 |
|
|---|
| 53 | // -------------------------------------------------------------------
|
|---|
| 54 | //
|
|---|
| 55 |
|
|---|
| 56 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 57 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 58 |
|
|---|
| 59 | #include "G4WentzelVIModel.hh"
|
|---|
| 60 | #include "Randomize.hh"
|
|---|
| 61 | #include "G4ParticleChangeForMSC.hh"
|
|---|
| 62 | #include "G4PhysicsTableHelper.hh"
|
|---|
| 63 | #include "G4ElementVector.hh"
|
|---|
| 64 | #include "G4ProductionCutsTable.hh"
|
|---|
| [1315] | 65 | #include "G4LossTableManager.hh"
|
|---|
| 66 | #include "G4Pow.hh"
|
|---|
| [968] | 67 |
|
|---|
| 68 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 69 |
|
|---|
| 70 | using namespace std;
|
|---|
| 71 |
|
|---|
| 72 | G4WentzelVIModel::G4WentzelVIModel(const G4String& nam) :
|
|---|
| 73 | G4VMscModel(nam),
|
|---|
| 74 | theLambdaTable(0),
|
|---|
| [1315] | 75 | numlimit(0.1),
|
|---|
| [968] | 76 | currentCouple(0),
|
|---|
| 77 | cosThetaMin(1.0),
|
|---|
| 78 | isInitialized(false),
|
|---|
| 79 | inside(false)
|
|---|
| 80 | {
|
|---|
| 81 | invsqrt12 = 1./sqrt(12.);
|
|---|
| 82 | tlimitminfix = 1.e-6*mm;
|
|---|
| [1315] | 83 | lowEnergyLimit = 1.0*eV;
|
|---|
| [968] | 84 | particle = 0;
|
|---|
| 85 | nelments = 5;
|
|---|
| 86 | xsecn.resize(nelments);
|
|---|
| 87 | prob.resize(nelments);
|
|---|
| [1315] | 88 | theManager = G4LossTableManager::Instance();
|
|---|
| 89 | fG4pow = G4Pow::GetInstance();
|
|---|
| 90 | wokvi = new G4WentzelOKandVIxSection();
|
|---|
| [968] | 91 | }
|
|---|
| 92 |
|
|---|
| 93 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 94 |
|
|---|
| 95 | G4WentzelVIModel::~G4WentzelVIModel()
|
|---|
| [1315] | 96 | {
|
|---|
| 97 | delete wokvi;
|
|---|
| 98 | }
|
|---|
| [968] | 99 |
|
|---|
| 100 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 101 |
|
|---|
| 102 | void G4WentzelVIModel::Initialise(const G4ParticleDefinition* p,
|
|---|
| 103 | const G4DataVector& cuts)
|
|---|
| 104 | {
|
|---|
| 105 | // reset parameters
|
|---|
| 106 | SetupParticle(p);
|
|---|
| 107 | currentRange = 0.0;
|
|---|
| 108 | cosThetaMax = cos(PolarAngleLimit());
|
|---|
| [1315] | 109 | wokvi->Initialise(p, cosThetaMax);
|
|---|
| 110 | /*
|
|---|
| 111 | G4cout << "G4WentzelVIModel: factorA2(GeV^2) = " << factorA2/(GeV*GeV)
|
|---|
| 112 | << " 1-cos(ThetaLimit)= " << 1 - cosThetaMax
|
|---|
| 113 | << G4endl;
|
|---|
| 114 | */
|
|---|
| [968] | 115 | currentCuts = &cuts;
|
|---|
| 116 |
|
|---|
| 117 | // set values of some data members
|
|---|
| 118 | if(!isInitialized) {
|
|---|
| 119 | isInitialized = true;
|
|---|
| [1055] | 120 | fParticleChange = GetParticleChangeForMSC();
|
|---|
| 121 | InitialiseSafetyHelper();
|
|---|
| [968] | 122 | }
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 126 |
|
|---|
| 127 | G4double G4WentzelVIModel::ComputeCrossSectionPerAtom(
|
|---|
| 128 | const G4ParticleDefinition* p,
|
|---|
| 129 | G4double kinEnergy,
|
|---|
| 130 | G4double Z, G4double,
|
|---|
| 131 | G4double cutEnergy, G4double)
|
|---|
| 132 | {
|
|---|
| [1315] | 133 | G4double xsec = 0.0;
|
|---|
| 134 | if(p != particle) { SetupParticle(p); }
|
|---|
| 135 | if(kinEnergy < lowEnergyLimit) { return xsec; }
|
|---|
| 136 | DefineMaterial(CurrentCouple());
|
|---|
| 137 | cosTetMaxNuc = wokvi->SetupKinematic(kinEnergy, currentMaterial);
|
|---|
| 138 | if(cosTetMaxNuc < 1.0) {
|
|---|
| 139 | cosTetMaxNuc = wokvi->SetupTarget(G4int(Z), cutEnergy);
|
|---|
| 140 | xsec = wokvi->ComputeTransportCrossSectionPerAtom(cosTetMaxNuc);
|
|---|
| 141 | /*
|
|---|
| 142 | G4cout << "G4WentzelVIModel::CS: Z= " << G4int(Z) << " e(MeV)= " << kinEnergy
|
|---|
| 143 | << " 1-cosN= " << 1 - costm << " xsec(bn)= " << xsec/barn
|
|---|
| 144 | << " " << particle->GetParticleName() << G4endl;
|
|---|
| [968] | 145 | */
|
|---|
| [1315] | 146 | }
|
|---|
| [968] | 147 | return xsec;
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 151 |
|
|---|
| 152 | G4double G4WentzelVIModel::ComputeTruePathLengthLimit(
|
|---|
| 153 | const G4Track& track,
|
|---|
| 154 | G4PhysicsTable* theTable,
|
|---|
| 155 | G4double currentMinimalStep)
|
|---|
| 156 | {
|
|---|
| 157 | G4double tlimit = currentMinimalStep;
|
|---|
| 158 | const G4DynamicParticle* dp = track.GetDynamicParticle();
|
|---|
| 159 | G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
|
|---|
| 160 | G4StepStatus stepStatus = sp->GetStepStatus();
|
|---|
| [1315] | 161 | //G4cout << "G4WentzelVIModel::ComputeTruePathLengthLimit stepStatus= "
|
|---|
| 162 | // << stepStatus << G4endl;
|
|---|
| [968] | 163 |
|
|---|
| 164 | // initialisation for 1st step
|
|---|
| 165 | if(stepStatus == fUndefined) {
|
|---|
| 166 | inside = false;
|
|---|
| 167 | SetupParticle(dp->GetDefinition());
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | // initialisation for each step, lambda may be computed from scratch
|
|---|
| 171 | preKinEnergy = dp->GetKineticEnergy();
|
|---|
| 172 | DefineMaterial(track.GetMaterialCutsCouple());
|
|---|
| [1315] | 173 | theLambdaTable = theTable;
|
|---|
| 174 | lambdaeff = GetLambda(preKinEnergy);
|
|---|
| [968] | 175 | currentRange =
|
|---|
| 176 | theManager->GetRangeFromRestricteDEDX(particle,preKinEnergy,currentCouple);
|
|---|
| [1315] | 177 | cosTetMaxNuc = wokvi->SetupKinematic(preKinEnergy, currentMaterial);
|
|---|
| [968] | 178 |
|
|---|
| 179 | // extra check for abnormal situation
|
|---|
| 180 | // this check needed to run MSC with eIoni and eBrem inactivated
|
|---|
| [1315] | 181 | if(tlimit > currentRange) { tlimit = currentRange; }
|
|---|
| [968] | 182 |
|
|---|
| 183 | // stop here if small range particle
|
|---|
| [1315] | 184 | if(inside) { return tlimit; }
|
|---|
| [968] | 185 |
|
|---|
| 186 | // pre step
|
|---|
| 187 | G4double presafety = sp->GetSafety();
|
|---|
| 188 |
|
|---|
| 189 | // compute presafety again if presafety <= 0 and no boundary
|
|---|
| 190 | // i.e. when it is needed for optimization purposes
|
|---|
| [1315] | 191 | if(stepStatus != fGeomBoundary && presafety < tlimitminfix) {
|
|---|
| [1055] | 192 | presafety = ComputeSafety(sp->GetPosition(), tlimit);
|
|---|
| [1315] | 193 | }
|
|---|
| [968] | 194 | /*
|
|---|
| [1315] | 195 | G4cout << "e(MeV)= " << preKinEnergy/MeV
|
|---|
| 196 | << " " << particle->GetParticleName()
|
|---|
| 197 | << " CurLimit(mm)= " << tlimit/mm <<" safety(mm)= " << presafety/mm
|
|---|
| 198 | << " R(mm)= " <<currentRange/mm
|
|---|
| 199 | << " L0(mm^-1)= " << lambdaeff*mm
|
|---|
| 200 | <<G4endl;
|
|---|
| [968] | 201 | */
|
|---|
| 202 | // far from geometry boundary
|
|---|
| 203 | if(currentRange < presafety) {
|
|---|
| 204 | inside = true;
|
|---|
| [1315] | 205 | return tlimit;
|
|---|
| [968] | 206 | }
|
|---|
| [1315] | 207 |
|
|---|
| 208 | // natural limit for high energy
|
|---|
| 209 | G4double rlimit = std::max(facrange*currentRange,
|
|---|
| 210 | 0.7*(1.0 - cosTetMaxNuc)*lambdaeff);
|
|---|
| 211 |
|
|---|
| 212 | // low-energy e-
|
|---|
| 213 | if(cosThetaMax > cosTetMaxNuc) {
|
|---|
| 214 | rlimit = std::min(rlimit, facsafety*presafety);
|
|---|
| 215 | }
|
|---|
| 216 |
|
|---|
| 217 | // cut correction
|
|---|
| 218 | G4double rcut = currentCouple->GetProductionCuts()->GetProductionCut(1);
|
|---|
| 219 | //G4cout << "rcut= " << rcut << " rlimit= " << rlimit << " presafety= " << presafety
|
|---|
| 220 | // << " 1-cosThetaMax= " <<1-cosThetaMax << " 1-cosTetMaxNuc= " << 1-cosTetMaxNuc
|
|---|
| 221 | // << G4endl;
|
|---|
| 222 | if(rcut > rlimit) { rlimit = std::min(rlimit, rcut*sqrt(rlimit/rcut)); }
|
|---|
| 223 |
|
|---|
| 224 | if(rlimit < tlimit) { tlimit = rlimit; }
|
|---|
| 225 |
|
|---|
| 226 | tlimit = std::max(tlimit, tlimitminfix);
|
|---|
| 227 |
|
|---|
| 228 | // step limit in infinite media
|
|---|
| 229 | tlimit = std::min(tlimit, 20*currentMaterial->GetRadlen());
|
|---|
| 230 | /*
|
|---|
| [968] | 231 | G4cout << particle->GetParticleName() << " e= " << preKinEnergy
|
|---|
| [1315] | 232 | << " L0= " << lambdaeff << " R= " << currentRange
|
|---|
| [968] | 233 | << "tlimit= " << tlimit
|
|---|
| 234 | << " currentMinimalStep= " << currentMinimalStep << G4endl;
|
|---|
| 235 | */
|
|---|
| 236 | return tlimit;
|
|---|
| 237 | }
|
|---|
| 238 |
|
|---|
| 239 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 240 |
|
|---|
| 241 | G4double G4WentzelVIModel::ComputeGeomPathLength(G4double truelength)
|
|---|
| 242 | {
|
|---|
| 243 | tPathLength = truelength;
|
|---|
| 244 | zPathLength = tPathLength;
|
|---|
| 245 |
|
|---|
| [1315] | 246 | if(lambdaeff > 0.0) {
|
|---|
| 247 | G4double tau = tPathLength/lambdaeff;
|
|---|
| [968] | 248 | //G4cout << "ComputeGeomPathLength: tLength= " << tPathLength
|
|---|
| [1315] | 249 | // << " Leff= " << lambdaeff << " tau= " << tau << G4endl;
|
|---|
| [968] | 250 | // small step
|
|---|
| 251 | if(tau < numlimit) {
|
|---|
| 252 | zPathLength *= (1.0 - 0.5*tau + tau*tau/6.0);
|
|---|
| 253 |
|
|---|
| 254 | // medium step
|
|---|
| 255 | } else {
|
|---|
| 256 | G4double e1 = 0.0;
|
|---|
| 257 | if(currentRange > tPathLength) {
|
|---|
| 258 | e1 = theManager->GetEnergy(particle,
|
|---|
| 259 | currentRange-tPathLength,
|
|---|
| 260 | currentCouple);
|
|---|
| 261 | }
|
|---|
| [1315] | 262 | e1 = 0.5*(e1 + preKinEnergy);
|
|---|
| 263 | cosTetMaxNuc = wokvi->SetupKinematic(e1, currentMaterial);
|
|---|
| 264 | lambdaeff = GetLambda(e1);
|
|---|
| [968] | 265 | zPathLength = lambdaeff*(1.0 - exp(-tPathLength/lambdaeff));
|
|---|
| 266 | }
|
|---|
| 267 | }
|
|---|
| 268 | //G4cout<<"Comp.geom: zLength= "<<zPathLength<<" tLength= "<<tPathLength<<G4endl;
|
|---|
| 269 | return zPathLength;
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 273 |
|
|---|
| 274 | G4double G4WentzelVIModel::ComputeTrueStepLength(G4double geomStepLength)
|
|---|
| 275 | {
|
|---|
| [1315] | 276 | // initialisation of single scattering x-section
|
|---|
| 277 | xtsec = 0.0;
|
|---|
| [968] | 278 |
|
|---|
| [1315] | 279 | // pathalogical case
|
|---|
| 280 | if(lambdaeff <= 0.0) {
|
|---|
| 281 | zPathLength = geomStepLength;
|
|---|
| 282 | tPathLength = geomStepLength;
|
|---|
| 283 | return tPathLength;
|
|---|
| 284 | }
|
|---|
| 285 |
|
|---|
| 286 | G4double tau = geomStepLength/lambdaeff;
|
|---|
| 287 |
|
|---|
| [968] | 288 | // step defined by transportation
|
|---|
| [1315] | 289 | if(geomStepLength != zPathLength) {
|
|---|
| [968] | 290 |
|
|---|
| [1315] | 291 | // step defined by transportation
|
|---|
| 292 | zPathLength = geomStepLength;
|
|---|
| 293 | tPathLength = zPathLength*(1.0 + 0.5*tau + tau*tau/3.0);
|
|---|
| 294 |
|
|---|
| 295 | // energy correction for a big step
|
|---|
| 296 | if(tau > numlimit) {
|
|---|
| 297 | G4double e1 = 0.0;
|
|---|
| 298 | if(currentRange > tPathLength) {
|
|---|
| 299 | e1 = theManager->GetEnergy(particle,
|
|---|
| 300 | currentRange-tPathLength,
|
|---|
| 301 | currentCouple);
|
|---|
| 302 | }
|
|---|
| 303 | e1 = 0.5*(e1 + preKinEnergy);
|
|---|
| 304 | cosTetMaxNuc = wokvi->SetupKinematic(e1, currentMaterial);
|
|---|
| 305 | lambdaeff = GetLambda(e1);
|
|---|
| 306 | tau = zPathLength/lambdaeff;
|
|---|
| 307 |
|
|---|
| 308 | if(tau < 0.999999) { tPathLength = -lambdaeff*log(1.0 - tau); }
|
|---|
| 309 | else { tPathLength = currentRange; }
|
|---|
| [968] | 310 | }
|
|---|
| [1315] | 311 | }
|
|---|
| [968] | 312 |
|
|---|
| [1315] | 313 | // check of step length
|
|---|
| 314 | // define threshold angle between single and multiple scattering
|
|---|
| 315 | cosThetaMin = 1.0 - 1.5*tPathLength/lambdaeff;
|
|---|
| [968] | 316 |
|
|---|
| [1315] | 317 | // recompute transport cross section - do not change energy
|
|---|
| 318 | // anymore - cannot be applied for big steps
|
|---|
| 319 | if(cosThetaMin > cosTetMaxNuc) {
|
|---|
| 320 |
|
|---|
| 321 | // new computation
|
|---|
| 322 | G4double xsec = ComputeXSectionPerVolume();
|
|---|
| 323 | //G4cout << "%%%% xsec= " << xsec << " xtsec= " << xtsec << G4endl;
|
|---|
| 324 | if(xtsec > 0.0) {
|
|---|
| 325 | if(xsec > 0.0) { lambdaeff = 1./xsec; }
|
|---|
| 326 | else { lambdaeff = DBL_MAX; }
|
|---|
| 327 |
|
|---|
| 328 | tau = zPathLength*xsec;
|
|---|
| 329 | if(tau < numlimit) { tPathLength = zPathLength*(1.0 + 0.5*tau + tau*tau/3.0); }
|
|---|
| 330 | else if(tau < 0.999999) { tPathLength = -lambdaeff*log(1.0 - tau); }
|
|---|
| 331 | else { tPathLength = currentRange; }
|
|---|
| 332 | }
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | if(tPathLength > currentRange) { tPathLength = currentRange; }
|
|---|
| 336 | if(tPathLength < zPathLength) { tPathLength = zPathLength; }
|
|---|
| 337 | /*
|
|---|
| 338 | G4cout <<"Comp.true: zLength= "<<zPathLength<<" tLength= "<<tPathLength
|
|---|
| 339 | <<" Leff(mm)= "<<lambdaeff/mm<<" sig0(1/mm)= " << xtsec <<G4endl;
|
|---|
| 340 | G4cout << particle->GetParticleName() << " 1-cosThetaMin= " << 1-cosThetaMin
|
|---|
| 341 | << " 1-cosTetMaxNuc= " << 1-cosTetMaxNuc
|
|---|
| 342 | << " e(MeV)= " << preKinEnergy/MeV << G4endl;
|
|---|
| 343 | */
|
|---|
| [968] | 344 | return tPathLength;
|
|---|
| 345 | }
|
|---|
| 346 |
|
|---|
| 347 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 348 |
|
|---|
| 349 | void G4WentzelVIModel::SampleScattering(const G4DynamicParticle* dynParticle,
|
|---|
| 350 | G4double safety)
|
|---|
| 351 | {
|
|---|
| 352 | //G4cout << "!##! G4WentzelVIModel::SampleScattering for "
|
|---|
| 353 | // << particle->GetParticleName() << G4endl;
|
|---|
| 354 |
|
|---|
| [1315] | 355 | // ignore scattering for zero step length and energy below the limit
|
|---|
| 356 | if(dynParticle->GetKineticEnergy() < lowEnergyLimit ||
|
|---|
| 357 | tPathLength <= DBL_MIN || lambdaeff <= DBL_MIN)
|
|---|
| 358 | { return; }
|
|---|
| 359 |
|
|---|
| 360 | G4double invlambda = 0.0;
|
|---|
| 361 | if(lambdaeff < DBL_MAX) { invlambda = 0.5/lambdaeff; }
|
|---|
| [1196] | 362 |
|
|---|
| [1315] | 363 | // use average kinetic energy over the step
|
|---|
| 364 | G4double cut = (*currentCuts)[currentMaterialIndex];
|
|---|
| 365 | /*
|
|---|
| 366 | G4cout <<"SampleScat: E0(MeV)= "<< preKinEnergy/MeV
|
|---|
| 367 | << " Leff= " << lambdaeff <<" sig0(1/mm)= " << xtsec
|
|---|
| 368 | << " x1= " << tPathLength*invlambda << " safety= " << safety << G4endl;
|
|---|
| [968] | 369 | */
|
|---|
| 370 |
|
|---|
| [1315] | 371 | G4double length = tPathLength;
|
|---|
| 372 | G4double lengthlim = tPathLength*1.e-6;
|
|---|
| [968] | 373 |
|
|---|
| [1315] | 374 | // step limit due msc
|
|---|
| 375 | G4double x0 = length;
|
|---|
| 376 | // large scattering angle case - two step approach
|
|---|
| 377 | if(tPathLength*invlambda > 0.5 && length > tlimitminfix) { x0 *= 0.5; }
|
|---|
| [968] | 378 |
|
|---|
| [1315] | 379 | // step limit due single scattering
|
|---|
| 380 | G4double x1 = length;
|
|---|
| 381 | if(xtsec > 0.0) { x1 = -log(G4UniformRand())/xtsec; }
|
|---|
| [968] | 382 |
|
|---|
| [1315] | 383 | const G4ElementVector* theElementVector =
|
|---|
| 384 | currentMaterial->GetElementVector();
|
|---|
| 385 | G4int nelm = currentMaterial->GetNumberOfElements();
|
|---|
| [968] | 386 |
|
|---|
| [1315] | 387 | // geometry
|
|---|
| 388 | G4double sint, cost, phi;
|
|---|
| 389 | G4ThreeVector oldDirection = dynParticle->GetMomentumDirection();
|
|---|
| 390 | G4ThreeVector temp(0.0,0.0,1.0);
|
|---|
| [968] | 391 |
|
|---|
| [1315] | 392 | // current position and direction relative to the end point
|
|---|
| 393 | // because of magnetic field geometry is computed relatively to the
|
|---|
| 394 | // end point of the step
|
|---|
| 395 | G4ThreeVector dir(0.0,0.0,1.0);
|
|---|
| 396 | G4ThreeVector pos(0.0,0.0,-zPathLength);
|
|---|
| 397 | G4double mscfac = zPathLength/tPathLength;
|
|---|
| [968] | 398 |
|
|---|
| [1315] | 399 | // start a loop
|
|---|
| 400 | do {
|
|---|
| 401 | G4double step = x0;
|
|---|
| 402 | G4bool singleScat = false;
|
|---|
| [968] | 403 |
|
|---|
| [1315] | 404 | // single scattering case
|
|---|
| 405 | if(x1 < x0) {
|
|---|
| 406 | step = x1;
|
|---|
| 407 | singleScat = true;
|
|---|
| [968] | 408 | }
|
|---|
| 409 |
|
|---|
| [1315] | 410 | // new position
|
|---|
| 411 | pos += step*mscfac*dir;
|
|---|
| [968] | 412 |
|
|---|
| [1315] | 413 | // added multiple scattering
|
|---|
| 414 | G4double z;
|
|---|
| 415 | G4double tet2 = step*invlambda;
|
|---|
| 416 | do { z = -tet2*log(G4UniformRand()); } while (z >= 1.0);
|
|---|
| [968] | 417 |
|
|---|
| 418 | cost = 1.0 - 2.0*z;
|
|---|
| 419 | sint = sqrt((1.0 - cost)*(1.0 + cost));
|
|---|
| 420 | phi = twopi*G4UniformRand();
|
|---|
| [1315] | 421 | G4double vx1 = sint*cos(phi);
|
|---|
| 422 | G4double vy1 = sint*sin(phi);
|
|---|
| [968] | 423 |
|
|---|
| [1315] | 424 | // lateral displacement
|
|---|
| 425 | if (latDisplasment && safety > tlimitminfix) {
|
|---|
| 426 | G4double rms = invsqrt12*sqrt(2.0*tet2);
|
|---|
| 427 | G4double dx = step*(0.5*vx1 + rms*G4RandGauss::shoot(0.0,1.0));
|
|---|
| 428 | G4double dy = step*(0.5*vy1 + rms*G4RandGauss::shoot(0.0,1.0));
|
|---|
| 429 | G4double dz;
|
|---|
| 430 | G4double d = (dx*dx + dy*dy)/(step*step);
|
|---|
| 431 | if(d < numlimit) { dz = -0.5*step*d*(1.0 + 0.25*d); }
|
|---|
| 432 | else if(d < 1.0) { dz = -step*(1.0 - sqrt(1.0 - d));}
|
|---|
| 433 | else { dx = dy = dz = 0.0; }
|
|---|
| [968] | 434 |
|
|---|
| [1315] | 435 | // change position
|
|---|
| 436 | temp.set(dx,dy,dz);
|
|---|
| 437 | temp.rotateUz(dir);
|
|---|
| 438 | pos += temp;
|
|---|
| 439 | }
|
|---|
| [968] | 440 |
|
|---|
| [1315] | 441 | // direction is changed
|
|---|
| 442 | temp.set(vx1,vy1,cost);
|
|---|
| 443 | temp.rotateUz(dir);
|
|---|
| 444 | dir = temp;
|
|---|
| [968] | 445 |
|
|---|
| [1315] | 446 | if(singleScat) {
|
|---|
| 447 |
|
|---|
| 448 | // select element
|
|---|
| 449 | G4int i = 0;
|
|---|
| 450 | if(nelm > 1) {
|
|---|
| 451 | G4double qsec = G4UniformRand()*xtsec;
|
|---|
| 452 | for (; i<nelm; ++i) { if(xsecn[i] >= qsec) { break; } }
|
|---|
| 453 | if(i >= nelm) { i = nelm - 1; }
|
|---|
| [968] | 454 | }
|
|---|
| [1315] | 455 | G4double cosTetM =
|
|---|
| 456 | wokvi->SetupTarget(G4int((*theElementVector)[i]->GetZ()), cut);
|
|---|
| 457 | temp = wokvi->SampleSingleScattering(cosThetaMin, cosTetM, prob[i]);
|
|---|
| 458 | temp.rotateUz(dir);
|
|---|
| [968] | 459 |
|
|---|
| [1315] | 460 | // renew direction
|
|---|
| 461 | dir = temp;
|
|---|
| 462 |
|
|---|
| 463 | // new single scatetring
|
|---|
| 464 | x1 = -log(G4UniformRand())/xtsec;
|
|---|
| 465 | }
|
|---|
| 466 |
|
|---|
| 467 | // update step
|
|---|
| 468 | length -= step;
|
|---|
| 469 |
|
|---|
| 470 | } while (length > lengthlim);
|
|---|
| 471 |
|
|---|
| 472 | dir.rotateUz(oldDirection);
|
|---|
| 473 | pos.rotateUz(oldDirection);
|
|---|
| 474 |
|
|---|
| [968] | 475 | //G4cout << "G4WentzelVIModel sampling of scattering is done" << G4endl;
|
|---|
| 476 | // end of sampling -------------------------------
|
|---|
| 477 |
|
|---|
| [1315] | 478 | fParticleChange->ProposeMomentumDirection(dir);
|
|---|
| [968] | 479 |
|
|---|
| [1315] | 480 | // lateral displacement
|
|---|
| 481 | if (latDisplasment) {
|
|---|
| [968] | 482 | G4double r = pos.mag();
|
|---|
| 483 |
|
|---|
| 484 | /*
|
|---|
| 485 | G4cout << " r(mm)= " << r << " safety= " << safety
|
|---|
| 486 | << " trueStep(mm)= " << tPathLength
|
|---|
| 487 | << " geomStep(mm)= " << zPathLength
|
|---|
| 488 | << G4endl;
|
|---|
| 489 | */
|
|---|
| 490 |
|
|---|
| 491 | if(r > tlimitminfix) {
|
|---|
| [1055] | 492 | pos /= r;
|
|---|
| 493 | ComputeDisplacement(fParticleChange, pos, r, safety);
|
|---|
| [968] | 494 | }
|
|---|
| 495 | }
|
|---|
| 496 | //G4cout << "G4WentzelVIModel::SampleScattering end" << G4endl;
|
|---|
| 497 | }
|
|---|
| 498 |
|
|---|
| 499 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 500 |
|
|---|
| 501 | G4double G4WentzelVIModel::ComputeXSectionPerVolume()
|
|---|
| 502 | {
|
|---|
| [1315] | 503 | // prepare recomputation of x-sections
|
|---|
| 504 | const G4ElementVector* theElementVector = currentMaterial->GetElementVector();
|
|---|
| [968] | 505 | const G4double* theAtomNumDensityVector =
|
|---|
| 506 | currentMaterial->GetVecNbOfAtomsPerVolume();
|
|---|
| 507 | G4int nelm = currentMaterial->GetNumberOfElements();
|
|---|
| 508 | if(nelm > nelments) {
|
|---|
| 509 | nelments = nelm;
|
|---|
| [1315] | 510 | xsecn.resize(nelm);
|
|---|
| 511 | prob.resize(nelm);
|
|---|
| [968] | 512 | }
|
|---|
| [1315] | 513 | G4double cut = (*currentCuts)[currentMaterialIndex];
|
|---|
| 514 | cosTetMaxNuc = wokvi->GetCosThetaNuc();
|
|---|
| [968] | 515 |
|
|---|
| [1315] | 516 | // check consistency
|
|---|
| [968] | 517 | xtsec = 0.0;
|
|---|
| [1315] | 518 | if(cosTetMaxNuc > cosThetaMin) { return 0.0; }
|
|---|
| 519 |
|
|---|
| 520 | // loop over elements
|
|---|
| [968] | 521 | G4double xs = 0.0;
|
|---|
| [1315] | 522 | for (G4int i=0; i<nelm; ++i) {
|
|---|
| 523 | G4double costm =
|
|---|
| 524 | wokvi->SetupTarget(G4int((*theElementVector)[i]->GetZ()), cut);
|
|---|
| [968] | 525 | G4double density = theAtomNumDensityVector[i];
|
|---|
| 526 |
|
|---|
| 527 | G4double esec = 0.0;
|
|---|
| [1315] | 528 | if(costm < cosThetaMin) {
|
|---|
| [968] | 529 |
|
|---|
| [1315] | 530 | // recompute the transport x-section
|
|---|
| 531 | xs += density*wokvi->ComputeTransportCrossSectionPerAtom(cosThetaMin);
|
|---|
| [968] | 532 |
|
|---|
| [1315] | 533 | // recompute the total x-section
|
|---|
| 534 | G4double nsec = wokvi->ComputeNuclearCrossSection(cosThetaMin, costm);
|
|---|
| 535 | esec = wokvi->ComputeElectronCrossSection(cosThetaMin, costm);
|
|---|
| 536 | nsec += esec;
|
|---|
| 537 | if(nsec > 0.0) { esec /= nsec; }
|
|---|
| 538 | xtsec += nsec*density;
|
|---|
| [968] | 539 | }
|
|---|
| [1315] | 540 | xsecn[i] = xtsec;
|
|---|
| [968] | 541 | prob[i] = esec;
|
|---|
| [1315] | 542 | //G4cout << i << " xs= " << xs << " xtsec= " << xtsec << " 1-cosThetaMin= " << 1-cosThetaMin
|
|---|
| 543 | // << " 1-cosTetMaxNuc2= " <<1-cosTetMaxNuc2<< G4endl;
|
|---|
| [968] | 544 | }
|
|---|
| 545 |
|
|---|
| 546 | //G4cout << "ComputeXS result: xsec(1/mm)= " << xs
|
|---|
| [1315] | 547 | // << " txsec(1/mm)= " << xtsec <<G4endl;
|
|---|
| [968] | 548 | return xs;
|
|---|
| 549 | }
|
|---|
| 550 |
|
|---|
| 551 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|