| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4WentzelVIModel.cc,v 1.37 2009/10/28 10:14:13 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4WentzelVIModel
|
|---|
| 35 | //
|
|---|
| 36 | // Author: V.Ivanchenko
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 09.04.2008 from G4MuMscModel
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| 41 | //
|
|---|
| 42 | //
|
|---|
| 43 | // Class Description:
|
|---|
| 44 | //
|
|---|
| 45 | // Implementation of the model of multiple scattering based on
|
|---|
| 46 | // G.Wentzel, Z. Phys. 40 (1927) 590.
|
|---|
| 47 | // H.W.Lewis, Phys Rev 78 (1950) 526.
|
|---|
| 48 | // J.M. Fernandez-Varea et al., NIM B73 (1993) 447.
|
|---|
| 49 | // L.Urban, CERN-OPEN-2006-077.
|
|---|
| 50 |
|
|---|
| 51 | // -------------------------------------------------------------------
|
|---|
| 52 | //
|
|---|
| 53 |
|
|---|
| 54 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 55 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 56 |
|
|---|
| 57 | #include "G4WentzelVIModel.hh"
|
|---|
| 58 | #include "Randomize.hh"
|
|---|
| 59 | #include "G4LossTableManager.hh"
|
|---|
| 60 | #include "G4ParticleChangeForMSC.hh"
|
|---|
| 61 | #include "G4PhysicsTableHelper.hh"
|
|---|
| 62 | #include "G4ElementVector.hh"
|
|---|
| 63 | #include "G4ProductionCutsTable.hh"
|
|---|
| 64 | #include "G4PhysicsLogVector.hh"
|
|---|
| 65 | #include "G4Electron.hh"
|
|---|
| 66 | #include "G4Positron.hh"
|
|---|
| 67 | #include "G4Proton.hh"
|
|---|
| 68 |
|
|---|
| 69 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 70 |
|
|---|
| 71 | G4double G4WentzelVIModel::ScreenRSquare[] = {0.0};
|
|---|
| 72 | G4double G4WentzelVIModel::FormFactor[] = {0.0};
|
|---|
| 73 |
|
|---|
| 74 | using namespace std;
|
|---|
| 75 |
|
|---|
| 76 | G4WentzelVIModel::G4WentzelVIModel(const G4String& nam) :
|
|---|
| 77 | G4VMscModel(nam),
|
|---|
| 78 | theLambdaTable(0),
|
|---|
| 79 | theLambda2Table(0),
|
|---|
| 80 | numlimit(0.2),
|
|---|
| 81 | nbins(60),
|
|---|
| 82 | nwarnings(0),
|
|---|
| 83 | nwarnlimit(50),
|
|---|
| 84 | currentCouple(0),
|
|---|
| 85 | cosThetaMin(1.0),
|
|---|
| 86 | q2Limit(TeV*TeV),
|
|---|
| 87 | alpha2(fine_structure_const*fine_structure_const),
|
|---|
| 88 | isInitialized(false),
|
|---|
| 89 | inside(false)
|
|---|
| 90 | {
|
|---|
| 91 | invsqrt12 = 1./sqrt(12.);
|
|---|
| 92 | tlimitminfix = 1.e-6*mm;
|
|---|
| 93 | theManager = G4LossTableManager::Instance();
|
|---|
| 94 | fNistManager = G4NistManager::Instance();
|
|---|
| 95 | theElectron = G4Electron::Electron();
|
|---|
| 96 | thePositron = G4Positron::Positron();
|
|---|
| 97 | theProton = G4Proton::Proton();
|
|---|
| 98 | lowEnergyLimit = 0.1*keV;
|
|---|
| 99 | G4double p0 = electron_mass_c2*classic_electr_radius;
|
|---|
| 100 | coeff = twopi*p0*p0;
|
|---|
| 101 | tkin = targetZ = mom2 = DBL_MIN;
|
|---|
| 102 | ecut = etag = DBL_MAX;
|
|---|
| 103 | particle = 0;
|
|---|
| 104 | nelments = 5;
|
|---|
| 105 | xsecn.resize(nelments);
|
|---|
| 106 | prob.resize(nelments);
|
|---|
| 107 |
|
|---|
| 108 | // Thomas-Fermi screening radii
|
|---|
| 109 | // Formfactors from A.V. Butkevich et al., NIM A 488 (2002) 282
|
|---|
| 110 |
|
|---|
| 111 | if(0.0 == ScreenRSquare[0]) {
|
|---|
| 112 | G4double a0 = electron_mass_c2/0.88534;
|
|---|
| 113 | G4double constn = 6.937e-6/(MeV*MeV);
|
|---|
| 114 |
|
|---|
| 115 | ScreenRSquare[0] = alpha2*a0*a0;
|
|---|
| 116 | for(G4int j=1; j<100; j++) {
|
|---|
| 117 | G4double x = a0*fNistManager->GetZ13(j);
|
|---|
| 118 | ScreenRSquare[j] = alpha2*x*x;
|
|---|
| 119 | x = fNistManager->GetA27(j);
|
|---|
| 120 | FormFactor[j] = constn*x*x;
|
|---|
| 121 | }
|
|---|
| 122 | }
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 126 |
|
|---|
| 127 | G4WentzelVIModel::~G4WentzelVIModel()
|
|---|
| 128 | {}
|
|---|
| 129 |
|
|---|
| 130 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 131 |
|
|---|
| 132 | void G4WentzelVIModel::Initialise(const G4ParticleDefinition* p,
|
|---|
| 133 | const G4DataVector& cuts)
|
|---|
| 134 | {
|
|---|
| 135 | // reset parameters
|
|---|
| 136 | SetupParticle(p);
|
|---|
| 137 | tkin = targetZ = mom2 = 0.0;
|
|---|
| 138 | ecut = etag = DBL_MAX;
|
|---|
| 139 | currentRange = 0.0;
|
|---|
| 140 | cosThetaMax = cos(PolarAngleLimit());
|
|---|
| 141 | currentCuts = &cuts;
|
|---|
| 142 |
|
|---|
| 143 | // set values of some data members
|
|---|
| 144 | if(!isInitialized) {
|
|---|
| 145 | isInitialized = true;
|
|---|
| 146 | fParticleChange = GetParticleChangeForMSC();
|
|---|
| 147 | InitialiseSafetyHelper();
|
|---|
| 148 | }
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| 151 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 152 |
|
|---|
| 153 | G4double G4WentzelVIModel::ComputeCrossSectionPerAtom(
|
|---|
| 154 | const G4ParticleDefinition* p,
|
|---|
| 155 | G4double kinEnergy,
|
|---|
| 156 | G4double Z, G4double,
|
|---|
| 157 | G4double cutEnergy, G4double)
|
|---|
| 158 | {
|
|---|
| 159 | SetupParticle(p);
|
|---|
| 160 | if(kinEnergy < lowEnergyLimit) return 0.0;
|
|---|
| 161 | SetupKinematic(kinEnergy, cutEnergy);
|
|---|
| 162 | SetupTarget(Z, kinEnergy);
|
|---|
| 163 | G4double xsec = ComputeTransportXSectionPerAtom();
|
|---|
| 164 | /*
|
|---|
| 165 | G4cout << "CS: e= " << tkin << " cosEl= " << cosTetMaxElec2
|
|---|
| 166 | << " cosN= " << cosTetMaxNuc2 << " xsec(bn)= " << xsec/barn
|
|---|
| 167 | << " " << particle->GetParticleName() << G4endl;
|
|---|
| 168 | */
|
|---|
| 169 | return xsec;
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 173 |
|
|---|
| 174 | G4double G4WentzelVIModel::ComputeTransportXSectionPerAtom()
|
|---|
| 175 | {
|
|---|
| 176 | G4double xSection = 0.0;
|
|---|
| 177 | G4double x, y, x1, x2, x3, x4;
|
|---|
| 178 |
|
|---|
| 179 | // scattering off electrons
|
|---|
| 180 | if(cosTetMaxElec2 < 1.0) {
|
|---|
| 181 | x = (1.0 - cosTetMaxElec2)/screenZ;
|
|---|
| 182 | if(x < numlimit) y = 0.5*x*x*(1.0 - 1.3333333*x + 1.5*x*x);
|
|---|
| 183 | else y = log(1.0 + x) - x/(1.0 + x);
|
|---|
| 184 | if(y < 0.0) {
|
|---|
| 185 | nwarnings++;
|
|---|
| 186 | if(nwarnings < nwarnlimit /*&& y < -1.e-10*/) {
|
|---|
| 187 | G4cout << "Electron scattering <0 for L1 " << y
|
|---|
| 188 | << " e(MeV)= " << tkin << " p(MeV/c)= " << sqrt(mom2)
|
|---|
| 189 | << " Z= " << targetZ << " "
|
|---|
| 190 | << particle->GetParticleName() << G4endl;
|
|---|
| 191 | G4cout << " z= " << 1.0-cosTetMaxElec2 << " screenZ= " << screenZ
|
|---|
| 192 | << " x= " << x << G4endl;
|
|---|
| 193 | }
|
|---|
| 194 | y = 0.0;
|
|---|
| 195 | }
|
|---|
| 196 | xSection = y;
|
|---|
| 197 | }
|
|---|
| 198 | /*
|
|---|
| 199 | G4cout << "G4WentzelVI:XS per A " << " Z= " << targetZ
|
|---|
| 200 | << " e(MeV)= " << tkin/MeV << " XSel= " << xSection
|
|---|
| 201 | << " cut(MeV)= " << ecut/MeV
|
|---|
| 202 | << " zmaxE= " << (1.0 - cosTetMaxElec)/screenZ
|
|---|
| 203 | << " zmaxN= " << (1.0 - cosTetMaxNuc2)/screenZ
|
|---|
| 204 | << " costm= " << cosTetMaxNuc2 << G4endl;
|
|---|
| 205 | */
|
|---|
| 206 | // scattering off nucleus
|
|---|
| 207 | if(cosTetMaxNuc2 < 1.0) {
|
|---|
| 208 | x = 1.0 - cosTetMaxNuc2;
|
|---|
| 209 | x1 = screenZ*formfactA;
|
|---|
| 210 | x2 = 1.0 - x1;
|
|---|
| 211 | x3 = x/screenZ;
|
|---|
| 212 | x4 = formfactA*x;
|
|---|
| 213 | // low-energy limit
|
|---|
| 214 | if(x3 < numlimit && x1 < numlimit) {
|
|---|
| 215 | y = 0.5*x3*x3*(1.0 - 1.3333333*x3 + 1.5*x3*x3 - 1.5*x1
|
|---|
| 216 | + 3.0*x1*x1 + 2.666666*x3*x1)/(x2*x2*x2);
|
|---|
| 217 | // high energy limit
|
|---|
| 218 | } else if(x2 <= 0.0) {
|
|---|
| 219 | x4 = x1*(1.0 + x3);
|
|---|
| 220 | y = x3*(1.0 + 0.5*x3 - (2.0 - x1)*(1.0 + x3 + x3*x3/3.0)/x4)/(x4*x4);
|
|---|
| 221 | // middle energy
|
|---|
| 222 | } else {
|
|---|
| 223 | y = ((1.0 + x1)*x2*log((1. + x3)/(1. + x4))
|
|---|
| 224 | - x3/(1. + x3) - x4/(1. + x4))/(x2*x2);
|
|---|
| 225 | }
|
|---|
| 226 | //G4cout << "y= " << y << " x1= " <<x1<<" x2= " <<x2
|
|---|
| 227 | // <<" x3= "<<x3<<" x4= " << x4<<G4endl;
|
|---|
| 228 | if(y < 0.0) {
|
|---|
| 229 | nwarnings++;
|
|---|
| 230 | if(nwarnings < nwarnlimit /*&& y < -1.e-10*/) {
|
|---|
| 231 | G4cout << "Nuclear scattering <0 for L1 " << y
|
|---|
| 232 | << " e(MeV)= " << tkin << " Z= " << targetZ << " "
|
|---|
| 233 | << particle->GetParticleName() << G4endl;
|
|---|
| 234 | G4cout << " formfactA= " << formfactA << " screenZ= " << screenZ
|
|---|
| 235 | << " x= " << " x1= " << x1 << " x2= " << x2
|
|---|
| 236 | << " x3= " << x3 << " x4= " << x4 <<G4endl;
|
|---|
| 237 | }
|
|---|
| 238 | y = 0.0;
|
|---|
| 239 | }
|
|---|
| 240 | xSection += y*targetZ;
|
|---|
| 241 | }
|
|---|
| 242 | xSection *= kinFactor;
|
|---|
| 243 | /*
|
|---|
| 244 | G4cout << "Z= " << targetZ << " XStot= " << xSection/barn
|
|---|
| 245 | << " screenZ= " << screenZ << " formF= " << formfactA
|
|---|
| 246 | << " for " << particle->GetParticleName()
|
|---|
| 247 | << " m= " << mass << " 1/v= " << sqrt(invbeta2) << " p= " << sqrt(mom2)
|
|---|
| 248 | << " x= " << x
|
|---|
| 249 | << G4endl;
|
|---|
| 250 | */
|
|---|
| 251 | return xSection;
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 255 |
|
|---|
| 256 | G4double G4WentzelVIModel::ComputeTruePathLengthLimit(
|
|---|
| 257 | const G4Track& track,
|
|---|
| 258 | G4PhysicsTable* theTable,
|
|---|
| 259 | G4double currentMinimalStep)
|
|---|
| 260 | {
|
|---|
| 261 | G4double tlimit = currentMinimalStep;
|
|---|
| 262 | const G4DynamicParticle* dp = track.GetDynamicParticle();
|
|---|
| 263 | G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
|
|---|
| 264 | G4StepStatus stepStatus = sp->GetStepStatus();
|
|---|
| 265 |
|
|---|
| 266 | // initialisation for 1st step
|
|---|
| 267 | if(stepStatus == fUndefined) {
|
|---|
| 268 | inside = false;
|
|---|
| 269 | SetupParticle(dp->GetDefinition());
|
|---|
| 270 | theLambdaTable = theTable;
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 | // initialisation for each step, lambda may be computed from scratch
|
|---|
| 274 | preKinEnergy = dp->GetKineticEnergy();
|
|---|
| 275 | DefineMaterial(track.GetMaterialCutsCouple());
|
|---|
| 276 | lambda0 = GetLambda(preKinEnergy);
|
|---|
| 277 | currentRange =
|
|---|
| 278 | theManager->GetRangeFromRestricteDEDX(particle,preKinEnergy,currentCouple);
|
|---|
| 279 |
|
|---|
| 280 | // extra check for abnormal situation
|
|---|
| 281 | // this check needed to run MSC with eIoni and eBrem inactivated
|
|---|
| 282 | if(tlimit > currentRange) tlimit = currentRange;
|
|---|
| 283 |
|
|---|
| 284 | // stop here if small range particle
|
|---|
| 285 | if(inside) return tlimit;
|
|---|
| 286 |
|
|---|
| 287 | // pre step
|
|---|
| 288 | G4double presafety = sp->GetSafety();
|
|---|
| 289 |
|
|---|
| 290 | // compute presafety again if presafety <= 0 and no boundary
|
|---|
| 291 | // i.e. when it is needed for optimization purposes
|
|---|
| 292 | if(stepStatus != fGeomBoundary && presafety < tlimitminfix)
|
|---|
| 293 | presafety = ComputeSafety(sp->GetPosition(), tlimit);
|
|---|
| 294 | /*
|
|---|
| 295 | G4cout << "G4WentzelVIModel::ComputeTruePathLengthLimit tlimit= "
|
|---|
| 296 | <<tlimit<<" safety= " << presafety
|
|---|
| 297 | << " range= " <<currentRange<<G4endl;
|
|---|
| 298 | */
|
|---|
| 299 | // far from geometry boundary
|
|---|
| 300 | if(currentRange < presafety) {
|
|---|
| 301 | inside = true;
|
|---|
| 302 |
|
|---|
| 303 | // limit mean scattering angle
|
|---|
| 304 | } else {
|
|---|
| 305 | G4double rlimit = facrange*lambda0;
|
|---|
| 306 | G4double rcut = currentCouple->GetProductionCuts()->GetProductionCut(1);
|
|---|
| 307 | if(rcut > rlimit) rlimit = std::pow(rcut*rcut*rlimit,0.33333333);
|
|---|
| 308 | rlimit = std::min(rlimit, facgeom*currentMaterial->GetRadlen());
|
|---|
| 309 | if(rlimit < tlimit) tlimit = rlimit;
|
|---|
| 310 | }
|
|---|
| 311 | /*
|
|---|
| 312 | G4cout << particle->GetParticleName() << " e= " << preKinEnergy
|
|---|
| 313 | << " L0= " << lambda0 << " R= " << currentRange
|
|---|
| 314 | << "tlimit= " << tlimit
|
|---|
| 315 | << " currentMinimalStep= " << currentMinimalStep << G4endl;
|
|---|
| 316 | */
|
|---|
| 317 | return tlimit;
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 321 |
|
|---|
| 322 | G4double G4WentzelVIModel::ComputeGeomPathLength(G4double truelength)
|
|---|
| 323 | {
|
|---|
| 324 | tPathLength = truelength;
|
|---|
| 325 | zPathLength = tPathLength;
|
|---|
| 326 | lambdaeff = lambda0;
|
|---|
| 327 |
|
|---|
| 328 | if(lambda0 > 0.0) {
|
|---|
| 329 | G4double tau = tPathLength/lambda0;
|
|---|
| 330 | //G4cout << "ComputeGeomPathLength: tLength= " << tPathLength
|
|---|
| 331 | // << " lambda0= " << lambda0 << " tau= " << tau << G4endl;
|
|---|
| 332 | // small step
|
|---|
| 333 | if(tau < numlimit) {
|
|---|
| 334 | zPathLength *= (1.0 - 0.5*tau + tau*tau/6.0);
|
|---|
| 335 |
|
|---|
| 336 | // medium step
|
|---|
| 337 | } else {
|
|---|
| 338 | // zPathLength = lambda0*(1.0 - exp(-tPathLength/lambda0));
|
|---|
| 339 | G4double e1 = 0.0;
|
|---|
| 340 | if(currentRange > tPathLength) {
|
|---|
| 341 | e1 = theManager->GetEnergy(particle,
|
|---|
| 342 | currentRange-tPathLength,
|
|---|
| 343 | currentCouple);
|
|---|
| 344 | }
|
|---|
| 345 | lambdaeff = GetLambda(0.5*(e1 + preKinEnergy));
|
|---|
| 346 | zPathLength = lambdaeff*(1.0 - exp(-tPathLength/lambdaeff));
|
|---|
| 347 | }
|
|---|
| 348 | }
|
|---|
| 349 | //G4cout<<"Comp.geom: zLength= "<<zPathLength<<" tLength= "<<tPathLength<<G4endl;
|
|---|
| 350 | return zPathLength;
|
|---|
| 351 | }
|
|---|
| 352 |
|
|---|
| 353 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 354 |
|
|---|
| 355 | G4double G4WentzelVIModel::ComputeTrueStepLength(G4double geomStepLength)
|
|---|
| 356 | {
|
|---|
| 357 | // step defined other than transportation
|
|---|
| 358 | if(geomStepLength == zPathLength) return tPathLength;
|
|---|
| 359 |
|
|---|
| 360 | // step defined by transportation
|
|---|
| 361 | tPathLength = geomStepLength;
|
|---|
| 362 | zPathLength = geomStepLength;
|
|---|
| 363 | G4double tau = zPathLength/lambdaeff;
|
|---|
| 364 | tPathLength *= (1.0 + 0.5*tau + tau*tau/3.0);
|
|---|
| 365 |
|
|---|
| 366 | if(tau > numlimit) {
|
|---|
| 367 | G4double e1 = 0.0;
|
|---|
| 368 | if(currentRange > tPathLength) {
|
|---|
| 369 | e1 = theManager->GetEnergy(particle,
|
|---|
| 370 | currentRange-tPathLength,
|
|---|
| 371 | currentCouple);
|
|---|
| 372 | }
|
|---|
| 373 | lambdaeff = GetLambda(0.5*(e1 + preKinEnergy));
|
|---|
| 374 | tau = zPathLength/lambdaeff;
|
|---|
| 375 |
|
|---|
| 376 | if(tau < 0.999999) tPathLength = -lambdaeff*log(1.0 - tau);
|
|---|
| 377 | else tPathLength = currentRange;
|
|---|
| 378 |
|
|---|
| 379 | if(tPathLength < zPathLength) tPathLength = zPathLength;
|
|---|
| 380 | }
|
|---|
| 381 | if(tPathLength > currentRange) tPathLength = currentRange;
|
|---|
| 382 | //G4cout<<"Comp.true: zLength= "<<zPathLength<<" tLength= "<<tPathLength<<G4endl;
|
|---|
| 383 | return tPathLength;
|
|---|
| 384 | }
|
|---|
| 385 |
|
|---|
| 386 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 387 |
|
|---|
| 388 | void G4WentzelVIModel::SampleScattering(const G4DynamicParticle* dynParticle,
|
|---|
| 389 | G4double safety)
|
|---|
| 390 | {
|
|---|
| 391 | //G4cout << "!##! G4WentzelVIModel::SampleScattering for "
|
|---|
| 392 | // << particle->GetParticleName() << G4endl;
|
|---|
| 393 | G4double kinEnergy = dynParticle->GetKineticEnergy();
|
|---|
| 394 |
|
|---|
| 395 | // ignore scattering for zero step length and enegy below the limit
|
|---|
| 396 | if(kinEnergy < lowEnergyLimit || tPathLength <= DBL_MIN) return;
|
|---|
| 397 |
|
|---|
| 398 | G4double ekin = preKinEnergy;
|
|---|
| 399 | if(ekin - kinEnergy > ekin*dtrl) {
|
|---|
| 400 | ekin = 0.5*(preKinEnergy + kinEnergy);
|
|---|
| 401 | lambdaeff = GetLambda(ekin);
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | G4double x1 = 0.5*tPathLength/lambdaeff;
|
|---|
| 405 | G4double cut= (*currentCuts)[currentMaterialIndex];
|
|---|
| 406 | /*
|
|---|
| 407 | G4cout <<"SampleScat: E0(MeV)= "<< preKinEnergy<<" Eeff(MeV)= "<<ekin/MeV
|
|---|
| 408 | << " L0= " << lambda0 << " Leff= " << lambdaeff
|
|---|
| 409 | << " x1= " << x1 << " safety= " << safety << G4endl;
|
|---|
| 410 | */
|
|---|
| 411 |
|
|---|
| 412 | G4double xsec = 0.0;
|
|---|
| 413 | G4bool largeAng = false;
|
|---|
| 414 |
|
|---|
| 415 | // large scattering angle case
|
|---|
| 416 | if(x1 > 0.5) {
|
|---|
| 417 | x1 *= 0.5;
|
|---|
| 418 | largeAng = true;
|
|---|
| 419 |
|
|---|
| 420 | // normal case
|
|---|
| 421 | } else {
|
|---|
| 422 |
|
|---|
| 423 | // define threshold angle between single and multiple scattering
|
|---|
| 424 | cosThetaMin = 1.0 - 3.0*x1;
|
|---|
| 425 |
|
|---|
| 426 | // for low-energy e-,e+ no limit
|
|---|
| 427 | SetupKinematic(ekin, cut);
|
|---|
| 428 |
|
|---|
| 429 | // recompute transport cross section
|
|---|
| 430 | if(cosThetaMin > cosTetMaxNuc) {
|
|---|
| 431 |
|
|---|
| 432 | xsec = ComputeXSectionPerVolume();
|
|---|
| 433 |
|
|---|
| 434 | if(xtsec > 0.0) x1 = 0.5*tPathLength*xtsec;
|
|---|
| 435 | else x1 = 0.0;
|
|---|
| 436 |
|
|---|
| 437 | /*
|
|---|
| 438 | G4cout << "cosTetMaxNuc= " << cosTetMaxNuc
|
|---|
| 439 | << " cosThetaMin= " << cosThetaMin
|
|---|
| 440 | << " cosThetaMax= " << cosThetaMax
|
|---|
| 441 | << " cosTetMaxElec2= " << cosTetMaxElec2 << G4endl;
|
|---|
| 442 | G4cout << "Recomputed xsec(1/mm)= " << xsec << " x1= " << x1 << G4endl;
|
|---|
| 443 | */
|
|---|
| 444 | }
|
|---|
| 445 | }
|
|---|
| 446 |
|
|---|
| 447 | // result of central part sampling
|
|---|
| 448 | G4double z;
|
|---|
| 449 | do {
|
|---|
| 450 | z = -x1*log(G4UniformRand());
|
|---|
| 451 | } while (z > 1.0);
|
|---|
| 452 |
|
|---|
| 453 | // cost is sampled ------------------------------
|
|---|
| 454 | G4double cost = 1.0 - 2.0*z;
|
|---|
| 455 | // if(cost < -1.0) cost = -1.0;
|
|---|
| 456 | // else if(cost > 1.0) cost = 1.0;
|
|---|
| 457 | G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
|
|---|
| 458 |
|
|---|
| 459 | G4double phi = twopi*G4UniformRand();
|
|---|
| 460 |
|
|---|
| 461 | G4double dirx = sint*cos(phi);
|
|---|
| 462 | G4double diry = sint*sin(phi);
|
|---|
| 463 |
|
|---|
| 464 | //G4cout << "G4WentzelVIModel: step(mm)= " << tPathLength/mm
|
|---|
| 465 | // << " sint= " << sint << " cost= " << cost<< G4endl;
|
|---|
| 466 |
|
|---|
| 467 | G4ThreeVector oldDirection = dynParticle->GetMomentumDirection();
|
|---|
| 468 | G4ThreeVector newDirection(dirx,diry,cost);
|
|---|
| 469 | G4ThreeVector temp(0.0,0.0,1.0);
|
|---|
| 470 | G4ThreeVector pos(0.0,0.0,-zPathLength);
|
|---|
| 471 | G4ThreeVector dir(0.0,0.0,1.0);
|
|---|
| 472 | G4bool isscat = false;
|
|---|
| 473 |
|
|---|
| 474 | // sample MSC scattering for large angle
|
|---|
| 475 | // extra central scattering for half step
|
|---|
| 476 | if(largeAng) {
|
|---|
| 477 | isscat = true;
|
|---|
| 478 | pos.setZ(-0.5*zPathLength);
|
|---|
| 479 | do {
|
|---|
| 480 | z = -x1*log(G4UniformRand());
|
|---|
| 481 | } while (z > 1.0);
|
|---|
| 482 | cost = 1.0 - 2.0*z;
|
|---|
| 483 | //if(std::fabs(cost) > 1.0) cost = 1.0;
|
|---|
| 484 |
|
|---|
| 485 | sint = sqrt((1.0 - cost)*(1.0 + cost));
|
|---|
| 486 | phi = twopi*G4UniformRand();
|
|---|
| 487 |
|
|---|
| 488 | // position and direction for secondary scattering
|
|---|
| 489 | dir.set(sint*cos(phi),sint*sin(phi),cost);
|
|---|
| 490 | pos += 0.5*dir*zPathLength;
|
|---|
| 491 | x1 *= 2.0;
|
|---|
| 492 | }
|
|---|
| 493 |
|
|---|
| 494 | // sample Rutherford scattering for large angle
|
|---|
| 495 | if(xsec > DBL_MIN) {
|
|---|
| 496 | G4double t = tPathLength;
|
|---|
| 497 | G4int nelm = currentMaterial->GetNumberOfElements();
|
|---|
| 498 | const G4ElementVector* theElementVector =
|
|---|
| 499 | currentMaterial->GetElementVector();
|
|---|
| 500 | do{
|
|---|
| 501 | G4double x = -log(G4UniformRand())/xsec;
|
|---|
| 502 | pos += dir*(zPathLength*std::min(x,t)/tPathLength);
|
|---|
| 503 | t -= x;
|
|---|
| 504 | if(t > 0.0) {
|
|---|
| 505 | G4double zz1 = 1.0;
|
|---|
| 506 | G4double qsec = G4UniformRand()*xsec;
|
|---|
| 507 |
|
|---|
| 508 | // scattering off nucleus
|
|---|
| 509 | G4int i = 0;
|
|---|
| 510 | if(nelm > 1) {
|
|---|
| 511 | for (; i<nelm; i++) {if(xsecn[i] >= qsec) break;}
|
|---|
| 512 | if(i >= nelm) i = nelm - 1;
|
|---|
| 513 | }
|
|---|
| 514 | SetupTarget((*theElementVector)[i]->GetZ(), tkin);
|
|---|
| 515 | G4double formf = formfactA;
|
|---|
| 516 | G4double costm = cosTetMaxNuc2;
|
|---|
| 517 | if(prob[i] > 0.0) {
|
|---|
| 518 | if(G4UniformRand() <= prob[i]) {
|
|---|
| 519 | formf = 0.0;
|
|---|
| 520 | costm = cosTetMaxElec2;
|
|---|
| 521 | }
|
|---|
| 522 | }
|
|---|
| 523 | if(cosThetaMin > costm) {
|
|---|
| 524 |
|
|---|
| 525 | G4double w1 = 1. - cosThetaMin + screenZ;
|
|---|
| 526 | G4double w2 = 1. - costm + screenZ;
|
|---|
| 527 | G4double w3 = cosThetaMin - costm;
|
|---|
| 528 | G4double grej, zz;
|
|---|
| 529 | do {
|
|---|
| 530 | zz = w1*w2/(w1 + G4UniformRand()*w3) - screenZ;
|
|---|
| 531 | grej = 1.0/(1.0 + formf*zz);
|
|---|
| 532 | } while ( G4UniformRand() > grej*grej );
|
|---|
| 533 | if(zz < 0.0) zz = 0.0;
|
|---|
| 534 | else if(zz > 2.0) zz = 2.0;
|
|---|
| 535 | zz1 = 1.0 - zz;
|
|---|
| 536 | }
|
|---|
| 537 | if(zz1 < 1.0) {
|
|---|
| 538 | isscat = true;
|
|---|
| 539 | //G4cout << "Rutherford zz1= " << zz1 << " t= " << t << G4endl;
|
|---|
| 540 | sint = sqrt((1.0 - zz1)*(1.0 + zz1));
|
|---|
| 541 | //G4cout << "sint= " << sint << G4endl;
|
|---|
| 542 | phi = twopi*G4UniformRand();
|
|---|
| 543 | G4double vx1 = sint*cos(phi);
|
|---|
| 544 | G4double vy1 = sint*sin(phi);
|
|---|
| 545 | temp.set(vx1,vy1,zz1);
|
|---|
| 546 | temp.rotateUz(dir);
|
|---|
| 547 | dir = temp;
|
|---|
| 548 | }
|
|---|
| 549 | }
|
|---|
| 550 | } while (t > 0.0);
|
|---|
| 551 | }
|
|---|
| 552 | if(isscat) newDirection.rotateUz(dir);
|
|---|
| 553 | newDirection.rotateUz(oldDirection);
|
|---|
| 554 |
|
|---|
| 555 | //G4cout << "G4WentzelVIModel sampling of scattering is done" << G4endl;
|
|---|
| 556 | // end of sampling -------------------------------
|
|---|
| 557 |
|
|---|
| 558 | fParticleChange->ProposeMomentumDirection(newDirection);
|
|---|
| 559 |
|
|---|
| 560 | if (latDisplasment && safety > tlimitminfix) {
|
|---|
| 561 | G4double rms = invsqrt12*sqrt(2.0*x1);
|
|---|
| 562 | G4double dx = zPathLength*(0.5*dirx + rms*G4RandGauss::shoot(0.0,1.0));
|
|---|
| 563 | G4double dy = zPathLength*(0.5*diry + rms*G4RandGauss::shoot(0.0,1.0));
|
|---|
| 564 | G4double dz;
|
|---|
| 565 | G4double d = (dx*dx + dy*dy)/(zPathLength*zPathLength);
|
|---|
| 566 | if(d < numlimit) dz = -0.5*zPathLength*d*(1.0 + 0.25*d);
|
|---|
| 567 | else if(d < 1.0) dz = -zPathLength*(1.0 - sqrt(1.0 - d));
|
|---|
| 568 | else {
|
|---|
| 569 | dx = dy = dz = 0.0;
|
|---|
| 570 | }
|
|---|
| 571 |
|
|---|
| 572 | temp.set(dx,dy,dz);
|
|---|
| 573 | if(isscat) temp.rotateUz(dir);
|
|---|
| 574 | pos += temp;
|
|---|
| 575 |
|
|---|
| 576 | pos.rotateUz(oldDirection);
|
|---|
| 577 |
|
|---|
| 578 | G4double r = pos.mag();
|
|---|
| 579 |
|
|---|
| 580 | /*
|
|---|
| 581 | G4cout << " r(mm)= " << r << " safety= " << safety
|
|---|
| 582 | << " trueStep(mm)= " << tPathLength
|
|---|
| 583 | << " geomStep(mm)= " << zPathLength
|
|---|
| 584 | << G4endl;
|
|---|
| 585 | */
|
|---|
| 586 |
|
|---|
| 587 | if(r > tlimitminfix) {
|
|---|
| 588 | pos /= r;
|
|---|
| 589 | ComputeDisplacement(fParticleChange, pos, r, safety);
|
|---|
| 590 | }
|
|---|
| 591 | }
|
|---|
| 592 | //G4cout << "G4WentzelVIModel::SampleScattering end" << G4endl;
|
|---|
| 593 | }
|
|---|
| 594 |
|
|---|
| 595 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 596 |
|
|---|
| 597 | G4double G4WentzelVIModel::ComputeXSectionPerVolume()
|
|---|
| 598 | {
|
|---|
| 599 | const G4ElementVector* theElementVector =
|
|---|
| 600 | currentMaterial->GetElementVector();
|
|---|
| 601 | const G4double* theAtomNumDensityVector =
|
|---|
| 602 | currentMaterial->GetVecNbOfAtomsPerVolume();
|
|---|
| 603 | G4int nelm = currentMaterial->GetNumberOfElements();
|
|---|
| 604 | if(nelm > nelments) {
|
|---|
| 605 | nelments = nelm;
|
|---|
| 606 | xsecn.resize(nelments);
|
|---|
| 607 | prob.resize(nelments);
|
|---|
| 608 | }
|
|---|
| 609 |
|
|---|
| 610 | xtsec = 0.0;
|
|---|
| 611 | G4double xs = 0.0;
|
|---|
| 612 |
|
|---|
| 613 | for (G4int i=0; i<nelm; i++) {
|
|---|
| 614 | SetupTarget((*theElementVector)[i]->GetZ(), tkin);
|
|---|
| 615 | G4double density = theAtomNumDensityVector[i];
|
|---|
| 616 | G4double cosnm = cosTetMaxNuc2;
|
|---|
| 617 | G4double cosem = cosTetMaxElec2;
|
|---|
| 618 |
|
|---|
| 619 | // recompute the angular limit
|
|---|
| 620 | cosTetMaxNuc2 = std::max(cosnm,cosThetaMin);
|
|---|
| 621 | cosTetMaxElec2 = std::max(cosem,cosThetaMin);
|
|---|
| 622 | xtsec += ComputeTransportXSectionPerAtom()*density;
|
|---|
| 623 | // return limit back
|
|---|
| 624 | cosTetMaxElec2 = cosem;
|
|---|
| 625 | cosTetMaxNuc2 = cosnm;
|
|---|
| 626 |
|
|---|
| 627 | G4double esec = 0.0;
|
|---|
| 628 | G4double nsec = 0.0;
|
|---|
| 629 | G4double x1 = 1.0 - cosThetaMin + screenZ;
|
|---|
| 630 | G4double f = kinFactor*density;
|
|---|
| 631 |
|
|---|
| 632 | // scattering off electrons
|
|---|
| 633 | if(cosThetaMin > cosem) {
|
|---|
| 634 | esec = f*(cosThetaMin - cosem)/(x1*(1.0 - cosem + screenZ));
|
|---|
| 635 | }
|
|---|
| 636 |
|
|---|
| 637 | // scattering off nucleaus
|
|---|
| 638 | if(cosThetaMin > cosnm) {
|
|---|
| 639 |
|
|---|
| 640 | // Rutherford part
|
|---|
| 641 | G4double s = screenZ*formfactA;
|
|---|
| 642 | G4double z1 = 1.0 - cosnm + screenZ;
|
|---|
| 643 | G4double s1 = 1.0 - s;
|
|---|
| 644 | G4double d = s1/formfactA;
|
|---|
| 645 |
|
|---|
| 646 | // check numerical limit
|
|---|
| 647 | if(d < numlimit*x1) {
|
|---|
| 648 | G4double x2 = x1*x1;
|
|---|
| 649 | G4double z2 = z1*z1;
|
|---|
| 650 | nsec = (1.0/(x1*x2) - 1.0/(z1*z2) - d*1.5*(1.0/(x2*x2) - 1.0/(z2*z2)))/
|
|---|
| 651 | (3.0*formfactA*formfactA);
|
|---|
| 652 | } else {
|
|---|
| 653 | G4double x2 = x1 + d;
|
|---|
| 654 | G4double z2 = z1 + d;
|
|---|
| 655 | nsec = (1.0/x1 - 1.0/z1 + 1.0/x2 - 1.0/z2 - 2.0*log(z1*x2/(z2*x1))/d)/(s1*s1);
|
|---|
| 656 | }
|
|---|
| 657 | nsec *= f*targetZ;
|
|---|
| 658 | }
|
|---|
| 659 | nsec += esec;
|
|---|
| 660 | if(nsec > 0.0) esec /= nsec;
|
|---|
| 661 | xs += nsec;
|
|---|
| 662 | xsecn[i] = xs;
|
|---|
| 663 | prob[i] = esec;
|
|---|
| 664 | //G4cout << i << " xs= " << xs << " cosThetaMin= " << cosThetaMin
|
|---|
| 665 | // << " costm= " << costm << G4endl;
|
|---|
| 666 | }
|
|---|
| 667 |
|
|---|
| 668 | //G4cout << "ComputeXS result: xsec(1/mm)= " << xs
|
|---|
| 669 | //<< " txsec(1/mm)= " << xtsec <<G4endl;
|
|---|
| 670 | return xs;
|
|---|
| 671 | }
|
|---|
| 672 |
|
|---|
| 673 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 674 |
|
|---|
| 675 | /*
|
|---|
| 676 | G4double G4MuMscModel::ComputeXSectionPerVolume()
|
|---|
| 677 | {
|
|---|
| 678 | const G4ElementVector* theElementVector =
|
|---|
| 679 | currentMaterial->GetElementVector();
|
|---|
| 680 | const G4double* theAtomNumDensityVector =
|
|---|
| 681 | currentMaterial->GetVecNbOfAtomsPerVolume();
|
|---|
| 682 | size_t nelm = currentMaterial->GetNumberOfElements();
|
|---|
| 683 |
|
|---|
| 684 | xsece1 = 0.0;
|
|---|
| 685 | xsece2 = 0.0;
|
|---|
| 686 | xsecn2 = 0.0;
|
|---|
| 687 | zcorr = 0.0;
|
|---|
| 688 |
|
|---|
| 689 | G4double fac = coeff*chargeSquare*invbeta2/mom2;
|
|---|
| 690 |
|
|---|
| 691 | for (size_t i=0; i<nelm; i++) {
|
|---|
| 692 | const G4Element* elm = (*theElementVector)[i];
|
|---|
| 693 | G4double Z = elm->GetZ();
|
|---|
| 694 | SetupTarget(Z, tkin);
|
|---|
| 695 | G4double den = fac*theAtomNumDensityVector[i]*Z;
|
|---|
| 696 |
|
|---|
| 697 | G4double x = 1.0 - cosThetaMin;
|
|---|
| 698 | G4double x1 = x + screenZ;
|
|---|
| 699 | G4double x2 = 1.0/(x1*x1);
|
|---|
| 700 | G4double x3 = 1.0 + x*formfactA;
|
|---|
| 701 |
|
|---|
| 702 | //G4cout << "x= " << x << " den= " << den << " cosE= " << cosTetMaxElec << G4endl;
|
|---|
| 703 | //G4cout << "cosThtaMin= " << cosThetaMin << G4endl;
|
|---|
| 704 | //G4cout << "cosTetMaxNuc= " << cosTetMaxNuc << " q2Limit= " << q2Limit << G4endl;
|
|---|
| 705 |
|
|---|
| 706 | // scattering off electrons
|
|---|
| 707 | if(cosTetMaxElec < cosThetaMin) {
|
|---|
| 708 |
|
|---|
| 709 | // flat part
|
|---|
| 710 | G4double s = den*x2*x;
|
|---|
| 711 | xsece1 += s;
|
|---|
| 712 | zcorr += 0.5*x*s;
|
|---|
| 713 |
|
|---|
| 714 | // Rutherford part
|
|---|
| 715 | G4double z1 = 1.0 - cosTetMaxElec + screenZ;
|
|---|
| 716 | G4double z2 = (cosThetaMin - cosTetMaxElec)/x1;
|
|---|
| 717 | if(z2 < 0.2) s = z2*(x - 0.5*z2*(x - screenZ))/x1;
|
|---|
| 718 | else s = log(1.0 + z2) - screenZ*z2/z1;
|
|---|
| 719 | xsece2 += den*z2/z1;
|
|---|
| 720 | zcorr += den*s;
|
|---|
| 721 | }
|
|---|
| 722 | den *= Z;
|
|---|
| 723 |
|
|---|
| 724 | //G4cout << "Z= " << Z<< " cosL= " << cosTetMaxNuc << " cosMin= " << cosThetaMin << G4endl;
|
|---|
| 725 | // scattering off nucleaus
|
|---|
| 726 | if(cosTetMaxNuc < cosThetaMin) {
|
|---|
| 727 |
|
|---|
| 728 | // flat part
|
|---|
| 729 | G4double s = den*x2*x/(x3*x3);
|
|---|
| 730 | xsece1 += s;
|
|---|
| 731 | zcorr += 0.5*x*s;
|
|---|
| 732 |
|
|---|
| 733 | // Rutherford part
|
|---|
| 734 | s = screenZ*formfactA;
|
|---|
| 735 | G4double w = 1.0 + 2.0*s;
|
|---|
| 736 | G4double z1 = 1.0 - cosTetMaxNuc + screenZ;
|
|---|
| 737 | G4double d = (1.0 - s)/formfactA;
|
|---|
| 738 | G4double x4 = x1 + d;
|
|---|
| 739 | G4double z4 = z1 + d;
|
|---|
| 740 | G4double t1 = 1.0/(x1*z1);
|
|---|
| 741 | G4double t4 = 1.0/(x4*z4);
|
|---|
| 742 | G4double w1 = cosThetaMin - cosTetMaxNuc;
|
|---|
| 743 | G4double w2 = log(z1*x4/(x1*z4));
|
|---|
| 744 |
|
|---|
| 745 | den *= w;
|
|---|
| 746 | xsecn2 += den*(w1*(t1 + t4) - 2.0*w2/d);
|
|---|
| 747 | zcorr += den*(w*w2 - w1*(screenZ*t1 + t4/formfactA));
|
|---|
| 748 | }
|
|---|
| 749 | xsece[i] = xsece2;
|
|---|
| 750 | xsecn[i] = xsecn2;
|
|---|
| 751 | // G4cout << i << " xsece2= " << xsece2 << " xsecn2= " << xsecn2 << G4endl;
|
|---|
| 752 | }
|
|---|
| 753 | G4double xsec = xsece1 + xsece2 + xsecn2;
|
|---|
| 754 |
|
|---|
| 755 | //G4cout << "xsece1= " << xsece1 << " xsece2= " << xsece2
|
|---|
| 756 | //<< " xsecn2= " << xsecn2
|
|---|
| 757 | // << " zsec= " << zcorr*0.5*tPathLength << G4endl;
|
|---|
| 758 | zcorr *= 0.5*tPathLength;
|
|---|
| 759 |
|
|---|
| 760 | return xsec;
|
|---|
| 761 | }
|
|---|
| 762 | */
|
|---|
| 763 |
|
|---|
| 764 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 765 |
|
|---|
| 766 | void G4WentzelVIModel::ComputeMaxElectronScattering(G4double cutEnergy)
|
|---|
| 767 | {
|
|---|
| 768 | ecut = cutEnergy;
|
|---|
| 769 | G4double tmax = tkin;
|
|---|
| 770 | cosTetMaxElec = 1.0;
|
|---|
| 771 | if(mass > MeV) {
|
|---|
| 772 | G4double ratio = electron_mass_c2/mass;
|
|---|
| 773 | G4double tau = tkin/mass;
|
|---|
| 774 | tmax = 2.0*electron_mass_c2*tau*(tau + 2.)/
|
|---|
| 775 | (1.0 + 2.0*ratio*(tau + 1.0) + ratio*ratio);
|
|---|
| 776 | cosTetMaxElec = 1.0 - std::min(cutEnergy, tmax)*electron_mass_c2/mom2;
|
|---|
| 777 | } else {
|
|---|
| 778 |
|
|---|
| 779 | if(particle == theElectron) tmax *= 0.5;
|
|---|
| 780 | G4double t = std::min(cutEnergy, tmax);
|
|---|
| 781 | G4double mom21 = t*(t + 2.0*electron_mass_c2);
|
|---|
| 782 | G4double t1 = tkin - t;
|
|---|
| 783 | //G4cout <<"tkin=" <<tkin<<" tmax= "<<tmax<<" t= "
|
|---|
| 784 | //<<t<< " t1= "<<t1<<" cut= "<<ecut<<G4endl;
|
|---|
| 785 | if(t1 > 0.0) {
|
|---|
| 786 | G4double mom22 = t1*(t1 + 2.0*mass);
|
|---|
| 787 | G4double ctm = (mom2 + mom22 - mom21)*0.5/sqrt(mom2*mom22);
|
|---|
| 788 | if(ctm < 1.0) cosTetMaxElec = ctm;
|
|---|
| 789 | if(ctm < -1.0) cosTetMaxElec = -1.0;
|
|---|
| 790 | }
|
|---|
| 791 | }
|
|---|
| 792 | if(cosTetMaxElec < cosTetMaxNuc) cosTetMaxElec = cosTetMaxNuc;
|
|---|
| 793 | }
|
|---|
| 794 |
|
|---|
| 795 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|