// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4eBremsstrahlungRelModel.cc,v 1.15 2010/04/06 17:02:23 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4eBremsstrahlungRelModel // // Author: Andreas Schaelicke // // Creation date: 12.08.2008 // // Modifications: // // 13.11.08 add SetLPMflag and SetLPMconstant methods // 13.11.08 change default LPMconstant value // // Main References: // Y.-S.Tsai, Rev. Mod. Phys. 46 (1974) 815; Rev. Mod. Phys. 49 (1977) 421. // S.Klein, Rev. Mod. Phys. 71 (1999) 1501. // T.Stanev et.al., Phys. Rev. D25 (1982) 1291. // M.L.Ter-Mikaelian, High-energy Electromagnetic Processes in Condensed Media, Wiley, 1972. // // ------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "G4eBremsstrahlungRelModel.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Gamma.hh" #include "Randomize.hh" #include "G4Material.hh" #include "G4Element.hh" #include "G4ElementVector.hh" #include "G4ProductionCutsTable.hh" #include "G4ParticleChangeForLoss.hh" #include "G4LossTableManager.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... const G4double G4eBremsstrahlungRelModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083, 0.5917, 0.7628, 0.8983, 0.9801 }; const G4double G4eBremsstrahlungRelModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813, 0.1813, 0.1569, 0.1112, 0.0506 }; const G4double G4eBremsstrahlungRelModel::Fel_light[] = {0., 5.31 , 4.79 , 4.74 , 4.71} ; const G4double G4eBremsstrahlungRelModel::Finel_light[] = {0., 6.144 , 5.621 , 5.805 , 5.924} ; using namespace std; G4eBremsstrahlungRelModel::G4eBremsstrahlungRelModel(const G4ParticleDefinition* p, const G4String& name) : G4VEmModel(name), particle(0), fXiLPM(0), fPhiLPM(0), fGLPM(0), isElectron(true), fMigdalConstant(classic_electr_radius*electron_Compton_length*electron_Compton_length*4.0*pi), fLPMconstant(fine_structure_const*electron_mass_c2*electron_mass_c2/(4.*pi*hbarc)*0.5), bremFactor(fine_structure_const*classic_electr_radius*classic_electr_radius*16./3.), use_completescreening(true),isInitialised(false) { if(p) SetParticle(p); theGamma = G4Gamma::Gamma(); minThreshold = 0.1*keV; SetLowEnergyLimit(GeV); nist = G4NistManager::Instance(); InitialiseConstants(); SetLPMFlag(true); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eBremsstrahlungRelModel::InitialiseConstants() { facFel = log(184.15); facFinel = log(1194.); preS1 = 1./(184.15*184.15); logTwo = log(2.); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4eBremsstrahlungRelModel::~G4eBremsstrahlungRelModel() { } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eBremsstrahlungRelModel::SetParticle(const G4ParticleDefinition* p) { particle = p; particleMass = p->GetPDGMass(); if(p == G4Electron::Electron()) isElectron = true; else isElectron = false; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eBremsstrahlungRelModel::MinEnergyCut(const G4ParticleDefinition*, const G4MaterialCutsCouple*) { return minThreshold; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eBremsstrahlungRelModel::SetupForMaterial(const G4ParticleDefinition*, const G4Material* mat, G4double kineticEnergy) { densityFactor = mat->GetElectronDensity()*fMigdalConstant; lpmEnergy = mat->GetRadlen()*fLPMconstant; // Threshold for LPM effect (i.e. below which LPM hidden by density effect) if (LPMFlag()) energyThresholdLPM=sqrt(densityFactor)*lpmEnergy; else energyThresholdLPM=1.e39; // i.e. do not use LPM effect // calculate threshold for density effect kinEnergy = kineticEnergy; totalEnergy = kineticEnergy + particleMass; densityCorr = densityFactor*totalEnergy*totalEnergy; // define critical gamma energies (important for integration/dicing) klpm=totalEnergy*totalEnergy/lpmEnergy; kp=sqrt(densityCorr); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eBremsstrahlungRelModel::Initialise(const G4ParticleDefinition* p, const G4DataVector& cuts) { if(p) SetParticle(p); highKinEnergy = HighEnergyLimit(); lowKinEnergy = LowEnergyLimit(); currentZ = 0.; InitialiseElementSelectors(p, cuts); if(isInitialised) return; fParticleChange = GetParticleChangeForLoss(); isInitialised = true; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eBremsstrahlungRelModel::ComputeDEDXPerVolume( const G4Material* material, const G4ParticleDefinition* p, G4double kineticEnergy, G4double cutEnergy) { if(!particle) SetParticle(p); if(kineticEnergy < lowKinEnergy) return 0.0; G4double cut = std::min(cutEnergy, kineticEnergy); if(cut == 0.0) return 0.0; SetupForMaterial(particle, material,kineticEnergy); const G4ElementVector* theElementVector = material->GetElementVector(); const G4double* theAtomicNumDensityVector = material->GetAtomicNumDensityVector(); G4double dedx = 0.0; // loop for elements in the material for (size_t i=0; iGetNumberOfElements(); i++) { G4VEmModel::SetCurrentElement((*theElementVector)[i]); SetCurrentElement((*theElementVector)[i]->GetZ()); dedx += theAtomicNumDensityVector[i]*currentZ*currentZ*ComputeBremLoss(cut); } dedx *= bremFactor; return dedx; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eBremsstrahlungRelModel::ComputeBremLoss(G4double cut) { G4double loss = 0.0; // number of intervals and integration step G4double vcut = cut/totalEnergy; G4int n = (G4int)(20*vcut) + 3; G4double delta = vcut/G4double(n); G4double e0 = 0.0; G4double xs; // integration for(G4int l=0; l energyThresholdLPM) { xs = ComputeRelDXSectionPerAtom(eg); } else { xs = ComputeDXSectionPerAtom(eg); } loss += wgi[i]*xs/(1.0 + densityCorr/(eg*eg)); } e0 += delta; } loss *= delta*totalEnergy; return loss; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eBremsstrahlungRelModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition* p, G4double kineticEnergy, G4double Z, G4double, G4double cutEnergy, G4double maxEnergy) { if(!particle) SetParticle(p); if(kineticEnergy < lowKinEnergy) return 0.0; G4double cut = std::min(cutEnergy, kineticEnergy); G4double tmax = std::min(maxEnergy, kineticEnergy); if(cut >= tmax) return 0.0; SetCurrentElement(Z); G4double cross = ComputeXSectionPerAtom(cut); // allow partial integration if(tmax < kinEnergy) cross -= ComputeXSectionPerAtom(tmax); cross *= Z*Z*bremFactor; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eBremsstrahlungRelModel::ComputeXSectionPerAtom(G4double cut) { G4double cross = 0.0; // number of intervals and integration step G4double vcut = log(cut/totalEnergy); G4double vmax = log(kinEnergy/totalEnergy); G4int n = (G4int)(0.45*(vmax - vcut)) + 4; // n=1; // integration test G4double delta = (vmax - vcut)/G4double(n); G4double e0 = vcut; G4double xs; // integration for(G4int l=0; l energyThresholdLPM) { xs = ComputeRelDXSectionPerAtom(eg); } else { xs = ComputeDXSectionPerAtom(eg); } cross += wgi[i]*xs/(1.0 + densityCorr/(eg*eg)); } e0 += delta; } cross *= delta; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eBremsstrahlungRelModel::CalcLPMFunctions(G4double k) { // *** calculate lpm variable s & sprime *** // Klein eqs. (78) & (79) G4double sprime = sqrt(0.125*k*lpmEnergy/(totalEnergy*(totalEnergy-k))); G4double s1 = preS1*z23; G4double logS1 = 2./3.*lnZ-2.*facFel; G4double logTS1 = logTwo+logS1; xiLPM = 2.; if (sprime>1) xiLPM = 1.; else if (sprime>sqrt(2.)*s1) { G4double h = log(sprime)/logTS1; xiLPM = 1+h-0.08*(1-h)*(1-sqr(1-h))/logTS1; } G4double s = sprime/sqrt(xiLPM); // *** merging with density effect*** should be only necessary in region "close to" kp, e.g. k<100*kp // using Ter-Mikaelian eq. (20.9) G4double k2 = k*k; s = s * (1 + (densityCorr/k2) ); // recalculate Xi using modified s above // Klein eq. (75) xiLPM = 1.; if (s<=s1) xiLPM = 2.; else if ( (s12. phiLPM = 1. - 0.0119048/s4; gLPM = 1. - 0.0230655/s4; } // *** make sure suppression is smaller than 1 *** // *** caused by Migdal approximation in xi *** if (xiLPM*phiLPM>1. || s>0.57) xiLPM=1./phiLPM; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eBremsstrahlungRelModel::ComputeRelDXSectionPerAtom(G4double gammaEnergy) // Ultra relativistic model // only valid for very high energies, but includes LPM suppression // * complete screening { if(gammaEnergy < 0.0) return 0.0; G4double y = gammaEnergy/totalEnergy; G4double y2 = y*y*.25; G4double yone2 = (1.-y+2.*y2); // ** form factors complete screening case ** // ** calc LPM functions -- include ter-mikaelian merging with density effect ** // G4double xiLPM, gLPM, phiLPM; // to be made member variables !!! CalcLPMFunctions(gammaEnergy); G4double mainLPM = xiLPM*(y2 * gLPM + yone2*phiLPM) * ( (Fel-fCoulomb) + Finel/currentZ ); G4double secondTerm = (1.-y)/12.*(1.+1./currentZ); G4double cross = mainLPM+secondTerm; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eBremsstrahlungRelModel::ComputeDXSectionPerAtom(G4double gammaEnergy) // Relativistic model // only valid for high energies (and if LPM suppression does not play a role) // * screening according to thomas-fermi-Model (only valid for Z>5) // * no LPM effect { if(gammaEnergy < 0.0) return 0.0; G4double y = gammaEnergy/totalEnergy; G4double main=0.,secondTerm=0.; if (use_completescreening|| currentZ<5) { // ** form factors complete screening case ** main = (3./4.*y*y - y + 1.) * ( (Fel-fCoulomb) + Finel/currentZ ); secondTerm = (1.-y)/12.*(1.+1./currentZ); } else { // ** intermediate screening using Thomas-Fermi FF from Tsai only valid for Z>=5** G4double dd=100.*electron_mass_c2*y/(totalEnergy-gammaEnergy); G4double gg=dd*z13; G4double eps=dd*z23; G4double phi1=Phi1(gg,currentZ), phi1m2=Phi1M2(gg,currentZ); G4double psi1=Psi1(eps,currentZ), psi1m2=Psi1M2(eps,currentZ); main = (3./4.*y*y - y + 1.) * ( (0.25*phi1-1./3.*lnZ-fCoulomb) + (0.25*psi1-2./3.*lnZ)/currentZ ); secondTerm = (1.-y)/8.*(phi1m2+psi1m2/currentZ); } G4double cross = main+secondTerm; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eBremsstrahlungRelModel::SampleSecondaries( std::vector* vdp, const G4MaterialCutsCouple* couple, const G4DynamicParticle* dp, G4double cutEnergy, G4double maxEnergy) { G4double kineticEnergy = dp->GetKineticEnergy(); if(kineticEnergy < lowKinEnergy) return; G4double cut = std::min(cutEnergy, kineticEnergy); G4double emax = std::min(maxEnergy, kineticEnergy); if(cut >= emax) return; SetupForMaterial(particle, couple->GetMaterial(),kineticEnergy); const G4Element* elm = SelectRandomAtom(couple,particle,kineticEnergy,cut,emax); SetCurrentElement(elm->GetZ()); kinEnergy = kineticEnergy; totalEnergy = kineticEnergy + particleMass; densityCorr = densityFactor*totalEnergy*totalEnergy; G4ThreeVector direction = dp->GetMomentumDirection(); // G4double fmax= fMax; G4bool highe = true; if(totalEnergy < energyThresholdLPM) highe = false; G4double xmin = log(cut*cut + densityCorr); G4double xmax = log(emax*emax + densityCorr); G4double gammaEnergy, f, x; do { x = exp(xmin + G4UniformRand()*(xmax - xmin)) - densityCorr; if(x < 0.0) x = 0.0; gammaEnergy = sqrt(x); if(highe) f = ComputeRelDXSectionPerAtom(gammaEnergy); else f = ComputeDXSectionPerAtom(gammaEnergy); if ( f > fMax ) { G4cout << "### G4eBremsstrahlungRelModel Warning: Majoranta exceeded! " << f << " > " << fMax << " Egamma(MeV)= " << gammaEnergy << " E(mEV)= " << kineticEnergy << G4endl; } } while (f < fMax*G4UniformRand()); // // angles of the emitted gamma. ( Z - axis along the parent particle) // // universal distribution suggested by L. Urban // (Geant3 manual (1993) Phys211), // derived from Tsai distribution (Rev Mod Phys 49,421(1977)) G4double u; const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ; if (9./(9.+d) > G4UniformRand()) u = - log(G4UniformRand()*G4UniformRand())/a1; else u = - log(G4UniformRand()*G4UniformRand())/a2; G4double theta = u*particleMass/totalEnergy; G4double sint = sin(theta); G4double phi = twopi * G4UniformRand(); G4ThreeVector gammaDirection(sint*cos(phi),sint*sin(phi), cos(theta)); gammaDirection.rotateUz(direction); // create G4DynamicParticle object for the Gamma G4DynamicParticle* g = new G4DynamicParticle(theGamma,gammaDirection, gammaEnergy); vdp->push_back(g); G4double totMomentum = sqrt(kineticEnergy*(totalEnergy + electron_mass_c2)); G4ThreeVector dir = totMomentum*direction - gammaEnergy*gammaDirection; direction = dir.unit(); // energy of primary G4double finalE = kineticEnergy - gammaEnergy; // stop tracking and create new secondary instead of primary if(gammaEnergy > SecondaryThreshold()) { fParticleChange->ProposeTrackStatus(fStopAndKill); fParticleChange->SetProposedKineticEnergy(0.0); G4DynamicParticle* el = new G4DynamicParticle(const_cast(particle), direction, finalE); vdp->push_back(el); // continue tracking } else { fParticleChange->SetProposedMomentumDirection(direction); fParticleChange->SetProposedKineticEnergy(finalE); } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......