// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4eCoulombScatteringModel.cc,v 1.78 2009/10/28 10:14:13 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4eCoulombScatteringModel // // Author: Vladimir Ivanchenko // // Creation date: 22.08.2005 // // Modifications: // // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the // logic of building - only elements from G4ElementTable // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim // 19.08.06 V.Ivanchenko add inline function ScreeningParameter // 09.10.07 V.Ivanchenko reorganized methods, add cut dependence in scattering off e- // 09.06.08 V.Ivanchenko add SelectIsotope and sampling of the recoil ion // 16.06.09 C.Consolandi fixed computation of effective mass // // // Class Description: // // ------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "G4eCoulombScatteringModel.hh" #include "Randomize.hh" #include "G4DataVector.hh" #include "G4ElementTable.hh" #include "G4PhysicsLogVector.hh" #include "G4ParticleChangeForGamma.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Proton.hh" #include "G4ParticleTable.hh" #include "G4ProductionCutsTable.hh" #include "G4NucleiProperties.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eCoulombScatteringModel::ScreenRSquare[] = {0.0}; G4double G4eCoulombScatteringModel::FormFactor[] = {0.0}; using namespace std; G4eCoulombScatteringModel::G4eCoulombScatteringModel(const G4String& nam) : G4VEmModel(nam), cosThetaMin(1.0), cosThetaMax(-1.0), q2Limit(TeV*TeV), alpha2(fine_structure_const*fine_structure_const), faclim(100.0), isInitialised(false) { fNistManager = G4NistManager::Instance(); theParticleTable = G4ParticleTable::GetParticleTable(); theElectron = G4Electron::Electron(); thePositron = G4Positron::Positron(); theProton = G4Proton::Proton(); currentMaterial = 0; currentElement = 0; lowEnergyLimit = 0.1*keV; G4double p0 = electron_mass_c2*classic_electr_radius; coeff = twopi*p0*p0; tkin = targetZ = mom2 = DBL_MIN; elecXSection = nucXSection = 0.0; recoilThreshold = 0.*keV; ecut = DBL_MAX; particle = 0; currentCouple = 0; // Thomas-Fermi screening radii // Formfactors from A.V. Butkevich et al., NIM A 488 (2002) 282 if(0.0 == ScreenRSquare[0]) { G4double a0 = electron_mass_c2/0.88534; G4double constn = 6.937e-6/(MeV*MeV); ScreenRSquare[0] = alpha2*a0*a0; for(G4int j=1; j<100; j++) { G4double x = a0*fNistManager->GetZ13(j); ScreenRSquare[j] = alpha2*x*x; x = fNistManager->GetA27(j); FormFactor[j] = constn*x*x; } } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4eCoulombScatteringModel::~G4eCoulombScatteringModel() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* p, const G4DataVector& cuts) { SetupParticle(p); currentCouple = 0; elecXSection = nucXSection = 0.0; tkin = targetZ = mom2 = DBL_MIN; ecut = etag = DBL_MAX; cosThetaMin = cos(PolarAngleLimit()); pCuts = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3); //G4cout << "!!! G4eCoulombScatteringModel::Initialise for " // << p->GetParticleName() << " cos(TetMin)= " << cosThetaMin // << " cos(TetMax)= " << cosThetaMax < MeV) { G4double ratio = electron_mass_c2/mass; G4double tau = tkin/mass; tmax = 2.0*electron_mass_c2*tau*(tau + 2.)/ (1.0 + 2.0*ratio*(tau + 1.0) + ratio*ratio); cosTetMaxElec = 1.0 - std::min(cutEnergy, tmax)*electron_mass_c2/mom2; } else { if(particle == theElectron) tmax *= 0.5; G4double t = std::min(cutEnergy, tmax); G4double mom21 = t*(t + 2.0*electron_mass_c2); G4double t1 = tkin - t; //G4cout << "tkin= " << tkin << " t= " << t << " t1= " << t1 << G4endl; if(t1 > 0.0) { G4double mom22 = t1*(t1 + 2.0*mass); G4double ctm = (mom2 + mom22 - mom21)*0.5/sqrt(mom2*mom22); //G4cout << "ctm= " << ctm << G4endl; if(ctm < 1.0) cosTetMaxElec = ctm; if(ctm < -1.0) cosTetMaxElec = -1.0; } } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition* p, G4double kinEnergy, G4double Z, G4double, G4double cutEnergy, G4double) { //G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom for " // << p->GetParticleName()<<" Z= "<GetParticleName() // << " cut= " << cutEnergy<< G4endl; // Choose nucleus currentElement = SelectRandomAtom(couple,particle, kinEnergy,cutEnergy,kinEnergy); SetupTarget(currentElement->GetZ(),kinEnergy); G4int ia = SelectIsotopeNumber(currentElement); targetMass = G4NucleiProperties::GetNuclearMass(ia, iz); G4double cost = SampleCosineTheta(); G4double z1 = 1.0 - cost; if(z1 < 0.0) return; G4double sint = sqrt(z1*(1.0 + cost)); //G4cout<<"## Sampled sint= " << sint << " Z= " << targetZ << " A= " << ia // << " screenZ= " << screenZ << " cn= " << formfactA << G4endl; G4double phi = twopi * G4UniformRand(); G4ThreeVector direction = dp->GetMomentumDirection(); G4ThreeVector newDirection(cos(phi)*sint,sin(phi)*sint,cost); newDirection.rotateUz(direction); fParticleChange->ProposeMomentumDirection(newDirection); // recoil sampling assuming a small recoil // and first order correction to primary 4-momentum G4double q2 = 2*z1*mom2; G4double trec = q2/(sqrt(targetMass*targetMass + q2) + targetMass); G4double finalT = kinEnergy - trec; //G4cout<<"G4eCoulombScatteringModel: finalT= "<