// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4eCoulombScatteringModel.cc,v 1.40 2008/01/07 08:32:01 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-01-patch-02 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4eCoulombScatteringModel // // Author: Vladimir Ivanchenko // // Creation date: 22.08.2005 // // Modifications: // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the // logic of building - only elements from G4ElementTable // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim // 19.08.06 V.Ivanchenko add inline function ScreeningParameter // 09.10.07 V.Ivanchenko reorganized methods, add cut dependence in scattering off e- // // Class Description: // // ------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "G4eCoulombScatteringModel.hh" #include "Randomize.hh" #include "G4DataVector.hh" #include "G4ElementTable.hh" #include "G4PhysicsLogVector.hh" #include "G4ParticleChangeForGamma.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Proton.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... using namespace std; G4eCoulombScatteringModel::G4eCoulombScatteringModel( G4double thetaMin, G4double thetaMax, G4bool build, G4double tlim, const G4String& nam) : G4VEmModel(nam), cosThetaMin(cos(thetaMin)), cosThetaMax(cos(thetaMax)), q2Limit(tlim), theCrossSectionTable(0), lowKEnergy(keV), highKEnergy(TeV), alpha2(fine_structure_const*fine_structure_const), faclim(100.0), nbins(12), nmax(100), buildTable(build), isInitialised(false) { fNistManager = G4NistManager::Instance(); theElectron = G4Electron::Electron(); thePositron = G4Positron::Positron(); theProton = G4Proton::Proton(); a0 = alpha2*electron_mass_c2*electron_mass_c2/(0.885*0.885); G4double p0 = electron_mass_c2*classic_electr_radius; coeff = twopi*p0*p0; constn = 6.937e-6/(MeV*MeV); tkin = targetZ = targetA = mom2 = DBL_MIN; elecXSection = nucXSection = 0.0; ecut = DBL_MAX; particle = 0; for(size_t j=0; j<100; j++) {index[j] = -1;} } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4eCoulombScatteringModel::~G4eCoulombScatteringModel() { if(theCrossSectionTable) { theCrossSectionTable->clearAndDestroy(); delete theCrossSectionTable; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* p, const G4DataVector&) { // G4cout << "!!! G4eCoulombScatteringModel::Initialise for " // << p->GetParticleName() << " cos(TetMin)= " << cosThetaMin // << " cos(TetMax)= " << cosThetaMax <(pParticleChange); else fParticleChange = new G4ParticleChangeForGamma(); } else { return; } if(p->GetParticleType() == "nucleus") buildTable = false; if(!buildTable) return; // Compute log cross section table per atom if(!theCrossSectionTable) theCrossSectionTable = new G4PhysicsTable(); nbins = 2*G4int(log10(highKEnergy/lowKEnergy)); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition* p, G4double kinEnergy, G4double Z, G4double A, G4double cutEnergy, G4double) { if(p == particle && kinEnergy == tkin && Z == targetZ && A == targetA && cutEnergy == ecut) return nucXSection; //G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom for " // << p->GetParticleName() << " Z= " << Z << " A= " << A // << " e= " << kinEnergy << G4endl; nucXSection = ComputeElectronXSectionPerAtom(p,kinEnergy,Z,A,cutEnergy); // nuclear cross section if(theCrossSectionTable) { G4bool b; G4int iz = G4int(Z); G4int idx = index[iz]; // compute table for given Z if(-1 == idx) { idx = theCrossSectionTable->size(); index[iz] = idx; G4PhysicsLogVector* ptrVector = new G4PhysicsLogVector(lowKEnergy, highKEnergy, nbins); // G4cout << "New vector Z= " << iz << " A= " << A << " idx= " << idx << G4endl; G4double e, value; for(G4int i=0; i<=nbins; i++) { e = ptrVector->GetLowEdgeEnergy( i ) ; value = CalculateCrossSectionPerAtom(p, e, Z, A); ptrVector->PutValue( i, log(value) ); } theCrossSectionTable->push_back(ptrVector); } // take value from the table nucXSection += std::exp((((*theCrossSectionTable)[idx]))->GetValue(kinEnergy, b)); // compute value from scratch } else nucXSection += CalculateCrossSectionPerAtom(p, kinEnergy, Z, A); // G4cout << " cross(bn)= " << nucXSection/barn << G4endl; if(nucXSection < 0.0) nucXSection = 0.0; return nucXSection; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4eCoulombScatteringModel::ComputeElectronXSectionPerAtom( const G4ParticleDefinition* p, G4double kinEnergy, G4double Z, G4double A, G4double cutEnergy) { if(p == particle && kinEnergy == tkin && Z == targetZ && cutEnergy == ecut) return elecXSection; ecut = cutEnergy; elecXSection = 0.0; SetupParticle(p); G4double ekin = std::max(keV, kinEnergy); //G4double ekin = kinEnergy; SetupTarget(Z, A, ekin); G4double tmax = tkin; if(p == theElectron) tmax *= 0.5; else if(p != thePositron) { G4double ratio = electron_mass_c2/mass; G4double tau = tkin/mass; tmax = 2.0*electron_mass_c2*tau*(tau + 2.)/ (1.0 + 2.0*ratio*(tau + 1.0) + ratio*ratio); } cosTetMaxElec = cosTetMaxNuc; G4double t = std::min(cutEnergy, tmax); G4double mom21 = t*(t + 2.0*electron_mass_c2); G4double t1 = tkin - t; if(t1 > 0.0) { G4double mom22 = t1*(t1 + 2.0*mass); G4double ctm = (mom2 + mom22 - mom21)*0.5/sqrt(mom2*mom22); if(ctm > cosTetMaxElec && ctm <= 1.0) cosTetMaxElec = ctm; } if(cosTetMaxElec < cosThetaMin) { G4double x1 = 1.0 - cosThetaMin + screenZ; G4double x2 = 1.0 - cosTetMaxElec + screenZ; elecXSection = coeff*Z*chargeSquare*invbeta2* (cosThetaMin - cosTetMaxElec)/(x1*x2*mom2); } // G4cout << "cut= " << ecut << " e= " << tkin // << " croosE(barn)= " << elecXSection/barn // << " cosEl= " << cosTetMaxElec << " costmin= " << cosThetaMin << G4endl; return elecXSection; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eCoulombScatteringModel::CalculateCrossSectionPerAtom( const G4ParticleDefinition* p, G4double kinEnergy, G4double Z, G4double A) { G4double cross = 0.0; SetupParticle(p); G4double ekin = std::max(keV, kinEnergy); //G4double ekin = kinEnergy; SetupTarget(Z, A, ekin); if(cosTetMaxNuc < cosThetaMin) { G4double x1 = 1.0 - cosThetaMin; G4double x2 = 1.0 - cosTetMaxNuc; G4double x3 = cosThetaMin - cosTetMaxNuc; G4double z1 = x1 + screenZ; G4double z2 = x2 + screenZ; G4double d = 1.0/formfactA - screenZ; G4double d1 = 1.0 - formfactA*screenZ; G4double zn1= x1 + d; G4double zn2= x2 + d; cross = coeff*Z*Z*chargeSquare*invbeta2 *(x3/(z1*z2) + x3/(zn1*zn2) + 2.0*std::log(z1*zn2/(z2*zn1))/d) / (mom2*d1*d1); } // G4cout << "CalculateCrossSectionPerAtom: e(MeV)= " << tkin // << " cross(b)= " << cross/barn << " ctmin= " << cosThetaMin // << " ctmax= " << cosTetMaxNuc << G4endl; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eCoulombScatteringModel::SampleSecondaries( std::vector*, const G4MaterialCutsCouple* couple, const G4DynamicParticle* dp, G4double cutEnergy, G4double maxEnergy) { const G4Material* aMaterial = couple->GetMaterial(); const G4ParticleDefinition* p = dp->GetDefinition(); G4double kinEnergy = dp->GetKineticEnergy(); // Select atom and setup SetupParticle(p); const G4Element* elm = SelectRandomAtom(aMaterial,p,kinEnergy,cutEnergy,maxEnergy); G4double Z = elm->GetZ(); G4double A = elm->GetN(); G4double cross = ComputeCrossSectionPerAtom(p,kinEnergy,Z,A,cutEnergy,maxEnergy); G4double costm = cosTetMaxNuc; G4double formf = formfactA; if(G4UniformRand()*cross < elecXSection) { costm = cosTetMaxElec; formf = 0.0; } /* G4cout << "G4eCoul...SampleSecondaries: e(MeV)= " << tkin << " ctmin= " << cosThetaMin << " ctmaxN= " << cosTetMaxNuc << " ctmax= " << costm << " Z= " << Z << " A= " << A << " cross= " << cross/barn << " crossE= " << elecXSection/barn << G4endl; */ if(costm >= cosThetaMin) return; G4double x1 = 1. - cosThetaMin + screenZ; G4double x2 = 1. - costm; G4double x3 = cosThetaMin - costm; G4double grej, z, z1; do { z = G4UniformRand()*x3; z1 = (x1*x2 - screenZ*z)/(x1 + z); if(z1 < 0.0) z1 = 0.0; else if(z1 > 2.0) z1 = 2.0; grej = 1.0/(1.0 + formf*z1); } while ( G4UniformRand() > grej*grej ); G4double cost = 1.0 - z1; G4double sint= sqrt(z1*(2.0 - z1)); /* if(sint > 0.1) G4cout<<"## SampleSecondaries: e(MeV)= " << kinEnergy << " sint= " << sint << " Z= " << Z << " screenZ= " << screenZ << " cn= " << formf << G4endl; */ G4double phi = twopi * G4UniformRand(); G4ThreeVector direction = dp->GetMomentumDirection(); G4ThreeVector newDirection(cos(phi)*sint,sin(phi)*sint,cost); newDirection.rotateUz(direction); fParticleChange->ProposeMomentumDirection(newDirection); return; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......