| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4eeToTwoGammaModel.cc,v 1.15 2009/04/09 18:41:18 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-beta-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4eeToTwoGammaModel
|
|---|
| 35 | //
|
|---|
| 36 | // Author: Vladimir Ivanchenko on base of Michel Maire code
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 02.08.2004
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| 41 | // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
|
|---|
| 42 | // 18-04-05 Compute CrossSectionPerVolume (V.Ivanchenko)
|
|---|
| 43 | // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma)
|
|---|
| 44 | // 29-06-06 Fix problem for zero energy incident positron (V.Ivanchenko)
|
|---|
| 45 | // 20-10-06 Add theGamma as a member (V.Ivanchenko)
|
|---|
| 46 | //
|
|---|
| 47 | //
|
|---|
| 48 | // Class Description:
|
|---|
| 49 | //
|
|---|
| 50 | // Implementation of e+ annihilation into 2 gamma
|
|---|
| 51 | //
|
|---|
| 52 | // The secondaries Gamma energies are sampled using the Heitler cross section.
|
|---|
| 53 | //
|
|---|
| 54 | // A modified version of the random number techniques of Butcher & Messel
|
|---|
| 55 | // is used (Nuc Phys 20(1960),15).
|
|---|
| 56 | //
|
|---|
| 57 | // GEANT4 internal units.
|
|---|
| 58 | //
|
|---|
| 59 | // Note 1: The initial electron is assumed free and at rest.
|
|---|
| 60 | //
|
|---|
| 61 | // Note 2: The annihilation processes producing one or more than two photons are
|
|---|
| 62 | // ignored, as negligible compared to the two photons process.
|
|---|
| 63 |
|
|---|
| 64 |
|
|---|
| 65 |
|
|---|
| 66 | //
|
|---|
| 67 | // -------------------------------------------------------------------
|
|---|
| 68 | //
|
|---|
| 69 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 70 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 71 |
|
|---|
| 72 | #include "G4eeToTwoGammaModel.hh"
|
|---|
| 73 | #include "G4TrackStatus.hh"
|
|---|
| 74 | #include "G4Electron.hh"
|
|---|
| 75 | #include "G4Positron.hh"
|
|---|
| 76 | #include "G4Gamma.hh"
|
|---|
| 77 | #include "Randomize.hh"
|
|---|
| 78 | #include "G4ParticleChangeForGamma.hh"
|
|---|
| 79 |
|
|---|
| 80 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 81 |
|
|---|
| 82 | using namespace std;
|
|---|
| 83 |
|
|---|
| 84 | G4eeToTwoGammaModel::G4eeToTwoGammaModel(const G4ParticleDefinition*,
|
|---|
| 85 | const G4String& nam)
|
|---|
| 86 | : G4VEmModel(nam),
|
|---|
| 87 | pi_rcl2(pi*classic_electr_radius*classic_electr_radius),
|
|---|
| 88 | isInitialised(false)
|
|---|
| 89 | {
|
|---|
| 90 | theGamma = G4Gamma::Gamma();
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 94 |
|
|---|
| 95 | G4eeToTwoGammaModel::~G4eeToTwoGammaModel()
|
|---|
| 96 | {}
|
|---|
| 97 |
|
|---|
| 98 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 99 |
|
|---|
| 100 | void G4eeToTwoGammaModel::Initialise(const G4ParticleDefinition*,
|
|---|
| 101 | const G4DataVector&)
|
|---|
| 102 | {
|
|---|
| 103 | if(isInitialised) return;
|
|---|
| 104 | fParticleChange = GetParticleChangeForGamma();
|
|---|
| 105 | isInitialised = true;
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 109 |
|
|---|
| 110 | G4double G4eeToTwoGammaModel::ComputeCrossSectionPerElectron(
|
|---|
| 111 | const G4ParticleDefinition*,
|
|---|
| 112 | G4double kineticEnergy,
|
|---|
| 113 | G4double, G4double)
|
|---|
| 114 | {
|
|---|
| 115 | // Calculates the cross section per electron of annihilation into two photons
|
|---|
| 116 | // from the Heilter formula.
|
|---|
| 117 |
|
|---|
| 118 | G4double tau = kineticEnergy/electron_mass_c2;
|
|---|
| 119 | G4double gam = tau + 1.0;
|
|---|
| 120 | G4double gamma2= gam*gam;
|
|---|
| 121 | G4double bg2 = tau * (tau+2.0);
|
|---|
| 122 | G4double bg = sqrt(bg2);
|
|---|
| 123 |
|
|---|
| 124 | G4double cross = pi_rcl2*((gamma2+4*gam+1.)*log(gam+bg) - (gam+3.)*bg)
|
|---|
| 125 | / (bg2*(gam+1.));
|
|---|
| 126 | return cross;
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 130 |
|
|---|
| 131 | G4double G4eeToTwoGammaModel::ComputeCrossSectionPerAtom(
|
|---|
| 132 | const G4ParticleDefinition* p,
|
|---|
| 133 | G4double kineticEnergy, G4double Z,
|
|---|
| 134 | G4double, G4double, G4double)
|
|---|
| 135 | {
|
|---|
| 136 | // Calculates the cross section per atom of annihilation into two photons
|
|---|
| 137 |
|
|---|
| 138 | G4double cross = Z*ComputeCrossSectionPerElectron(p,kineticEnergy);
|
|---|
| 139 | return cross;
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 143 |
|
|---|
| 144 | G4double G4eeToTwoGammaModel::CrossSectionPerVolume(
|
|---|
| 145 | const G4Material* material,
|
|---|
| 146 | const G4ParticleDefinition* p,
|
|---|
| 147 | G4double kineticEnergy,
|
|---|
| 148 | G4double, G4double)
|
|---|
| 149 | {
|
|---|
| 150 | // Calculates the cross section per volume of annihilation into two photons
|
|---|
| 151 |
|
|---|
| 152 | G4double eDensity = material->GetElectronDensity();
|
|---|
| 153 | G4double cross = eDensity*ComputeCrossSectionPerElectron(p,kineticEnergy);
|
|---|
| 154 | return cross;
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 158 |
|
|---|
| 159 | void G4eeToTwoGammaModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp,
|
|---|
| 160 | const G4MaterialCutsCouple*,
|
|---|
| 161 | const G4DynamicParticle* dp,
|
|---|
| 162 | G4double,
|
|---|
| 163 | G4double)
|
|---|
| 164 | {
|
|---|
| 165 | G4double PositKinEnergy = dp->GetKineticEnergy();
|
|---|
| 166 |
|
|---|
| 167 | // Case at rest
|
|---|
| 168 | if(PositKinEnergy == 0.0) {
|
|---|
| 169 | G4double cost = 2.*G4UniformRand()-1.;
|
|---|
| 170 | G4double sint = sqrt((1. - cost)*(1. + cost));
|
|---|
| 171 | G4double phi = twopi * G4UniformRand();
|
|---|
| 172 | G4ThreeVector dir (sint*cos(phi), sint*sin(phi), cost);
|
|---|
| 173 | G4DynamicParticle* aGamma1 = new G4DynamicParticle(theGamma,
|
|---|
| 174 | dir, electron_mass_c2);
|
|---|
| 175 | G4DynamicParticle* aGamma2 = new G4DynamicParticle(theGamma,
|
|---|
| 176 | -dir, electron_mass_c2);
|
|---|
| 177 | vdp->push_back(aGamma1);
|
|---|
| 178 | vdp->push_back(aGamma2);
|
|---|
| 179 |
|
|---|
| 180 | } else {
|
|---|
| 181 |
|
|---|
| 182 | G4ThreeVector PositDirection = dp->GetMomentumDirection();
|
|---|
| 183 |
|
|---|
| 184 | G4double tau = PositKinEnergy/electron_mass_c2;
|
|---|
| 185 | G4double gam = tau + 1.0;
|
|---|
| 186 | G4double tau2 = tau + 2.0;
|
|---|
| 187 | G4double sqgrate = sqrt(tau/tau2)*0.5;
|
|---|
| 188 | G4double sqg2m1 = sqrt(tau*tau2);
|
|---|
| 189 |
|
|---|
| 190 | // limits of the energy sampling
|
|---|
| 191 | G4double epsilmin = 0.5 - sqgrate;
|
|---|
| 192 | G4double epsilmax = 0.5 + sqgrate;
|
|---|
| 193 | G4double epsilqot = epsilmax/epsilmin;
|
|---|
| 194 |
|
|---|
| 195 | //
|
|---|
| 196 | // sample the energy rate of the created gammas
|
|---|
| 197 | //
|
|---|
| 198 | G4double epsil, greject;
|
|---|
| 199 |
|
|---|
| 200 | do {
|
|---|
| 201 | epsil = epsilmin*pow(epsilqot,G4UniformRand());
|
|---|
| 202 | greject = 1. - epsil + (2.*gam*epsil-1.)/(epsil*tau2*tau2);
|
|---|
| 203 | } while( greject < G4UniformRand() );
|
|---|
| 204 |
|
|---|
| 205 | //
|
|---|
| 206 | // scattered Gamma angles. ( Z - axis along the parent positron)
|
|---|
| 207 | //
|
|---|
| 208 |
|
|---|
| 209 | G4double cost = (epsil*tau2-1.)/(epsil*sqg2m1);
|
|---|
| 210 | if(std::abs(cost) > 1.0) {
|
|---|
| 211 | G4cout << "### G4eeToTwoGammaModel WARNING cost= " << cost
|
|---|
| 212 | << " positron Ekin(MeV)= " << PositKinEnergy
|
|---|
| 213 | << " gamma epsil= " << epsil
|
|---|
| 214 | << G4endl;
|
|---|
| 215 | if(cost > 1.0) cost = 1.0;
|
|---|
| 216 | else cost = -1.0;
|
|---|
| 217 | }
|
|---|
| 218 | G4double sint = sqrt((1.+cost)*(1.-cost));
|
|---|
| 219 | G4double phi = twopi * G4UniformRand();
|
|---|
| 220 |
|
|---|
| 221 | G4double dirx = sint*cos(phi) , diry = sint*sin(phi) , dirz = cost;
|
|---|
| 222 |
|
|---|
| 223 | //
|
|---|
| 224 | // kinematic of the created pair
|
|---|
| 225 | //
|
|---|
| 226 |
|
|---|
| 227 | G4double TotalAvailableEnergy = PositKinEnergy + 2.0*electron_mass_c2;
|
|---|
| 228 | G4double Phot1Energy = epsil*TotalAvailableEnergy;
|
|---|
| 229 |
|
|---|
| 230 | G4ThreeVector Phot1Direction (dirx, diry, dirz);
|
|---|
| 231 | Phot1Direction.rotateUz(PositDirection);
|
|---|
| 232 | G4DynamicParticle* aGamma1 =
|
|---|
| 233 | new G4DynamicParticle (theGamma,Phot1Direction, Phot1Energy);
|
|---|
| 234 | vdp->push_back(aGamma1);
|
|---|
| 235 |
|
|---|
| 236 | G4double Phot2Energy =(1.-epsil)*TotalAvailableEnergy;
|
|---|
| 237 | G4double PositP= sqrt(PositKinEnergy*(PositKinEnergy+2.*electron_mass_c2));
|
|---|
| 238 | G4ThreeVector dir = PositDirection*PositP - Phot1Direction*Phot1Energy;
|
|---|
| 239 | G4ThreeVector Phot2Direction = dir.unit();
|
|---|
| 240 |
|
|---|
| 241 | // create G4DynamicParticle object for the particle2
|
|---|
| 242 | G4DynamicParticle* aGamma2=
|
|---|
| 243 | new G4DynamicParticle (theGamma,Phot2Direction, Phot2Energy);
|
|---|
| 244 | vdp->push_back(aGamma2);
|
|---|
| 245 | /*
|
|---|
| 246 | G4cout << "Annihilation in fly: e0= " << PositKinEnergy
|
|---|
| 247 | << " m= " << electron_mass_c2
|
|---|
| 248 | << " e1= " << Phot1Energy
|
|---|
| 249 | << " e2= " << Phot2Energy << " dir= " << dir
|
|---|
| 250 | << " -> " << Phot1Direction << " "
|
|---|
| 251 | << Phot2Direction << G4endl;
|
|---|
| 252 | */
|
|---|
| 253 | }
|
|---|
| 254 | fParticleChange->SetProposedKineticEnergy(0.);
|
|---|
| 255 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 256 | }
|
|---|
| 257 |
|
|---|
| 258 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|