source: trunk/source/processes/electromagnetic/utils/include/G4VEnergyLossProcess.hh@ 1057

Last change on this file since 1057 was 1055, checked in by garnier, 17 years ago

maj sur la beta de geant 4.9.3

File size: 36.1 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
[1055]26// $Id: G4VEnergyLossProcess.hh,v 1.87 2009/04/07 18:39:47 vnivanch Exp $
[819]27// GEANT4 tag $Name:
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class header file
32//
33//
34// File name: G4VEnergyLossProcess
35//
36// Author: Vladimir Ivanchenko on base of Laszlo Urban code
37//
38// Creation date: 03.01.2002
39//
40// Modifications:
41//
42// 26-12-02 Secondary production moved to derived classes (V.Ivanchenko)
43// 20-01-03 Migrade to cut per region (V.Ivanchenko)
44// 24-01-03 Make models region aware (V.Ivanchenko)
45// 05-02-03 Fix compilation warnings (V.Ivanchenko)
46// 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko)
47// 17-02-03 Fix problem of store/restore tables (V.Ivanchenko)
48// 26-02-03 Region dependent step limit (V.Ivanchenko)
49// 26-03-03 Add GetDEDXDispersion (V.Ivanchenko)
50// 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko)
51// 13-05-03 Add calculation of precise range (V.Ivanchenko)
52// 21-07-03 Add UpdateEmModel method (V.Ivanchenko)
53// 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko)
54// 14-01-04 Activate precise range calculation (V.Ivanchenko)
55// 10-03-04 Fix problem of step limit calculation (V.Ivanchenko)
56// 30-06-04 make destructor virtual (V.Ivanchenko)
57// 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko)
58// 03-08-04 Add DEDX table to all processes for control on integral range(VI)
59// 06-08-04 Clear up names of member functions (V.Ivanchenko)
60// 27-08-04 Add NeedBuildTables method (V.Ivanchneko)
61// 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko)
62// 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko)
63// 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
64// 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko)
65// 10-01-05 Remove SetStepLimits (V.Ivanchenko)
66// 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko)
67// 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko)
68// 20-01-06 Introduce G4EmTableType and reducing number of methods (VI)
69// 26-01-06 Add public method GetCSDARange (V.Ivanchenko)
70// 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko)
71// 23-03-06 Use isIonisation flag (V.Ivanchenko)
72// 13-05-06 Add method to access model by index (V.Ivanchenko)
73// 14-01-07 add SetEmModel(index) and SetFluctModel() (mma)
74// 15-01-07 Add separate ionisation tables and reorganise get/set methods for
75// dedx tables (V.Ivanchenko)
76// 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko)
77// 27-07-07 use stl vector for emModels instead of C-array (V.Ivanchenko)
78// 25-09-07 More accurate handling zero xsect in
79// PostStepGetPhysicalInteractionLength (V.Ivanchenko)
80// 27-10-07 Virtual functions moved to source (V.Ivanchenko)
[961]81// 15-07-08 Reorder class members for further multi-thread development (VI)
[819]82//
83// Class Description:
84//
85// It is the unified energy loss process it calculates the continuous
86// energy loss for charged particles using a set of Energy Loss
87// models valid for different energy regions. There are a possibility
88// to create and access to dE/dx and range tables, or to calculate
89// that information on fly.
90
91// -------------------------------------------------------------------
92//
93
94#ifndef G4VEnergyLossProcess_h
95#define G4VEnergyLossProcess_h 1
96
97#include "G4VContinuousDiscreteProcess.hh"
98#include "globals.hh"
99#include "G4Material.hh"
100#include "G4MaterialCutsCouple.hh"
101#include "G4Track.hh"
102#include "G4EmModelManager.hh"
103#include "G4UnitsTable.hh"
104#include "G4ParticleChangeForLoss.hh"
105#include "G4EmTableType.hh"
106#include "G4PhysicsTable.hh"
107#include "G4PhysicsVector.hh"
108
109class G4Step;
110class G4ParticleDefinition;
111class G4VEmModel;
112class G4VEmFluctuationModel;
113class G4DataVector;
114class G4Region;
115class G4SafetyHelper;
116
117//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
118
119class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess
120{
121public:
122
123 G4VEnergyLossProcess(const G4String& name = "EnergyLoss",
124 G4ProcessType type = fElectromagnetic);
125
126 virtual ~G4VEnergyLossProcess();
127
[1055]128private:
129 // clean vectors and arrays
130 void Clean();
131
[819]132 //------------------------------------------------------------------------
133 // Virtual methods to be implemented in concrete processes
134 //------------------------------------------------------------------------
135
[1055]136public:
[819]137 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0;
138
139 virtual void PrintInfo() = 0;
140
141protected:
142
143 virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*,
144 const G4ParticleDefinition*) = 0;
145
146 //------------------------------------------------------------------------
147 // Methods with standard implementation; may be overwritten if needed
148 //------------------------------------------------------------------------
149
150 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*,
151 const G4Material*, G4double cut);
152
153 //------------------------------------------------------------------------
[1055]154 // Virtual methods implementation common to all EM ContinuousDiscrete
155 // processes. Further inheritance is not assumed
[819]156 //------------------------------------------------------------------------
[961]157
[819]158public:
159
[1055]160 // prepare all tables
[819]161 void PreparePhysicsTable(const G4ParticleDefinition&);
162
[1055]163 // build all tables
[819]164 void BuildPhysicsTable(const G4ParticleDefinition&);
165
[1055]166 // build a table
167 G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted);
168
169 // build a table
170 G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted);
171
172 // summary printout after initialisation
173 void PrintInfoDefinition();
174
175 // Add subcutoff option for the region
176 void ActivateSubCutoff(G4bool val, const G4Region* region = 0);
177
178 // Activate deexcitation code for region
179 void ActivateDeexcitation(G4bool, const G4Region* region = 0);
180
181 // Step limit from AlongStep
[961]182 G4double AlongStepGetPhysicalInteractionLength(const G4Track&,
183 G4double previousStepSize,
184 G4double currentMinimumStep,
185 G4double& currentSafety,
186 G4GPILSelection* selection);
187
[1055]188 // Step limit from cross section
[961]189 G4double PostStepGetPhysicalInteractionLength(const G4Track& track,
190 G4double previousStepSize,
191 G4ForceCondition* condition);
192
[1055]193 // AlongStep computations
[819]194 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&);
195
[1055]196 // Sampling of secondaries in vicinity of geometrical boundary
197 void SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&,
198 G4VEmModel* model, G4int matIdx,
199 G4double& extraEdep);
200
201 // PostStep sampling of secondaries
[819]202 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&);
203
[1055]204 // Store all PhysicsTable in files.
205 // Return false in case of any fatal failure at I/O
[819]206 G4bool StorePhysicsTable(const G4ParticleDefinition*,
207 const G4String& directory,
208 G4bool ascii = false);
209
[1055]210 // Retrieve all Physics from a files.
211 // Return true if all the Physics Table are built.
212 // Return false if any fatal failure.
[819]213 G4bool RetrievePhysicsTable(const G4ParticleDefinition*,
214 const G4String& directory,
215 G4bool ascii);
216
[1055]217private:
218 // store a table
219 G4bool StoreTable(const G4ParticleDefinition* p,
220 G4PhysicsTable*, G4bool ascii,
221 const G4String& directory,
222 const G4String& tname);
[819]223
[1055]224 // retrieve a table
225 G4bool RetrieveTable(const G4ParticleDefinition* p,
226 G4PhysicsTable*, G4bool ascii,
227 const G4String& directory,
228 const G4String& tname,
229 G4bool mandatory);
[819]230
231 //------------------------------------------------------------------------
[1055]232 // Public interface to cross section, mfp and sampling of fluctuations
233 // These methods are not used in run time
[819]234 //------------------------------------------------------------------------
235
236public:
[1055]237 // access to dispersion of restricted energy loss
[819]238 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple,
239 const G4DynamicParticle* dp,
240 G4double length);
241
[1055]242 // Access to cross section table
243 G4double CrossSectionPerVolume(G4double kineticEnergy,
244 const G4MaterialCutsCouple* couple);
[819]245
[1055]246 // access to cross section
247 G4double MeanFreePath(const G4Track& track);
[819]248
[1055]249 // access to step limit
250 G4double ContinuousStepLimit(const G4Track& track,
251 G4double previousStepSize,
252 G4double currentMinimumStep,
253 G4double& currentSafety);
[819]254
[1055]255protected:
[819]256
[1055]257 // implementation of the pure virtual method
258 G4double GetMeanFreePath(const G4Track& track,
259 G4double previousStepSize,
260 G4ForceCondition* condition);
[819]261
[1055]262 // implementation of the pure virtual method
263 G4double GetContinuousStepLimit(const G4Track& track,
264 G4double previousStepSize,
265 G4double currentMinimumStep,
266 G4double& currentSafety);
[819]267
[1055]268 //------------------------------------------------------------------------
269 // Run time method which may be also used by derived processes
270 //------------------------------------------------------------------------
[819]271
[1055]272 // creeation of an empty vector for cross section
273 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*,
274 G4double cut);
[819]275
[1055]276 inline size_t CurrentMaterialCutsCoupleIndex() const;
[819]277
[1055]278 inline G4double GetCurrentRange() const;
[819]279
280 //------------------------------------------------------------------------
[1055]281 // Specific methods to set, access, modify models
[819]282 //------------------------------------------------------------------------
283
[1055]284 // Select model in run time
285 inline void SelectModel(G4double kinEnergy);
[819]286
[1055]287public:
288 // Select model by energy and region index
289 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy,
290 size_t& idx) const;
[819]291
[1055]292 // Add EM model coupled with fluctuation model for region, smaller value
293 // of order defines which pair of models will be selected for a given
294 // energy interval
295 void AddEmModel(G4int, G4VEmModel*,
296 G4VEmFluctuationModel* fluc = 0,
297 const G4Region* region = 0);
[819]298
[1055]299 // Define new energy range for the model identified by the name
300 void UpdateEmModel(const G4String&, G4double, G4double);
301
[819]302 // Assign a model to a process
[1055]303 void SetEmModel(G4VEmModel*, G4int index=1);
[819]304
305 // return the assigned model
[1055]306 G4VEmModel* EmModel(G4int index=1);
[819]307
[1055]308 // Access to models
309 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false);
310
311 G4int NumberOfModels();
312
[819]313 // Assign a fluctuation model to a process
[1055]314 void SetFluctModel(G4VEmFluctuationModel*);
[819]315
316 // return the assigned fluctuation model
317 inline G4VEmFluctuationModel* FluctModel();
318
[1055]319 //------------------------------------------------------------------------
320 // Define and access particle type
321 //------------------------------------------------------------------------
[819]322
[1055]323protected:
324 inline void SetParticle(const G4ParticleDefinition* p);
325 inline void SetSecondaryParticle(const G4ParticleDefinition* p);
[819]326
[1055]327public:
328 inline void SetBaseParticle(const G4ParticleDefinition* p);
329 inline const G4ParticleDefinition* Particle() const;
330 inline const G4ParticleDefinition* BaseParticle() const;
331 inline const G4ParticleDefinition* SecondaryParticle() const;
[819]332
333 //------------------------------------------------------------------------
[1055]334 // Get/set parameters to configure the process at initialisation time
[819]335 //------------------------------------------------------------------------
336
[1055]337 // Add subcutoff process (bremsstrahlung) to sample secondary
338 // particle production in vicinity of the geometry boundary
339 void AddCollaborativeProcess(G4VEnergyLossProcess*);
340
[819]341 inline void SetLossFluctuations(G4bool val);
342 inline void SetRandomStep(G4bool val);
[1055]343
[819]344 inline void SetIntegral(G4bool val);
345 inline G4bool IsIntegral() const;
346
347 // Set/Get flag "isIonisation"
348 inline void SetIonisation(G4bool val);
349 inline G4bool IsIonisationProcess() const;
350
351 // Redefine parameteters for stepping control
352 //
353 inline void SetLinearLossLimit(G4double val);
354 inline void SetMinSubRange(G4double val);
[1055]355 inline void SetLambdaFactor(G4double val);
[1007]356 inline void SetStepFunction(G4double v1, G4double v2);
[819]357
358 inline G4int NumberOfSubCutoffRegions() const;
[1055]359 inline G4int NumberOfDERegions() const;
[819]360
361 //------------------------------------------------------------------------
[1055]362 // Specific methods to path Physics Tables to the process
[819]363 //------------------------------------------------------------------------
364
[1055]365 void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType);
366 void SetCSDARangeTable(G4PhysicsTable* pRange);
367 void SetRangeTableForLoss(G4PhysicsTable* p);
368 void SetSecondaryRangeTable(G4PhysicsTable* p);
369 void SetInverseRangeTable(G4PhysicsTable* p);
[819]370
[1055]371 void SetLambdaTable(G4PhysicsTable* p);
372 void SetSubLambdaTable(G4PhysicsTable* p);
[819]373
[1055]374 // Binning for dEdx, range, inverse range and labda tables
375 inline void SetDEDXBinning(G4int nbins);
376 inline void SetLambdaBinning(G4int nbins);
[819]377
[1055]378 // Binning for dEdx, range, and inverse range tables
379 inline void SetDEDXBinningForCSDARange(G4int nbins);
[819]380
[1055]381 // Min kinetic energy for tables
382 inline void SetMinKinEnergy(G4double e);
383 inline G4double MinKinEnergy() const;
[819]384
[1055]385 // Max kinetic energy for tables
386 inline void SetMaxKinEnergy(G4double e);
387 inline G4double MaxKinEnergy() const;
[819]388
[1055]389 // Max kinetic energy for tables
390 inline void SetMaxKinEnergyForCSDARange(G4double e);
[819]391
[1055]392 // Return values for given G4MaterialCutsCouple
393 inline G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*);
394 inline G4double GetDEDXForSubsec(G4double& kineticEnergy,
395 const G4MaterialCutsCouple*);
396 inline G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*);
397 inline G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*);
398 inline G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*);
399 inline G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*);
400 inline G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*);
[819]401
[1055]402 inline G4bool TablesAreBuilt() const;
[819]403
[1055]404 // Access to specific tables
405 inline G4PhysicsTable* DEDXTable() const;
406 inline G4PhysicsTable* DEDXTableForSubsec() const;
407 inline G4PhysicsTable* DEDXunRestrictedTable() const;
408 inline G4PhysicsTable* IonisationTable() const;
409 inline G4PhysicsTable* IonisationTableForSubsec() const;
410 inline G4PhysicsTable* CSDARangeTable() const;
411 inline G4PhysicsTable* RangeTableForLoss() const;
412 inline G4PhysicsTable* InverseRangeTable() const;
413 inline G4PhysicsTable* LambdaTable();
414 inline G4PhysicsTable* SubLambdaTable();
[819]415
[961]416 //------------------------------------------------------------------------
[1055]417 // Run time method for simulation of ionisation
[961]418 //------------------------------------------------------------------------
[819]419
[1055]420 // sample range at the end of a step
421 inline G4double SampleRange();
[819]422
[1055]423 // Set scaling parameters for ions is needed to G4EmCalculator
424 inline void SetDynamicMassCharge(G4double massratio, G4double charge2ratio);
[819]425
[1055]426private:
[819]427
[961]428 // define material and indexes
429 inline void DefineMaterial(const G4MaterialCutsCouple* couple);
[819]430
[1055]431 //------------------------------------------------------------------------
432 // Compute values using scaling relation, mass and charge of based particle
433 //------------------------------------------------------------------------
434
[819]435 inline G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy);
436 inline G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy);
437 inline G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy);
438 inline G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy);
439 inline G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy);
440 inline G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy);
[1055]441 inline G4double ScaledKinEnergyForLoss(G4double range);
[1007]442 inline G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy);
[819]443 inline void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy);
444
445 // hide assignment operator
446 G4VEnergyLossProcess(G4VEnergyLossProcess &);
447 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right);
448
[961]449 // ======== Parameters of the class fixed at construction =========
[819]450
[961]451 G4EmModelManager* modelManager;
452 G4SafetyHelper* safetyHelper;
[819]453
[961]454 const G4ParticleDefinition* secondaryParticle;
455 const G4ParticleDefinition* theElectron;
456 const G4ParticleDefinition* thePositron;
457 const G4ParticleDefinition* theGenericIon;
[819]458
[961]459 G4PhysicsVector* vstrag;
[819]460
[961]461 // ======== Parameters of the class fixed at initialisation =======
462
[819]463 std::vector<G4VEmModel*> emModels;
464 G4VEmFluctuationModel* fluctModel;
465 std::vector<const G4Region*> scoffRegions;
[1055]466 std::vector<const G4Region*> deRegions;
[819]467 G4int nSCoffRegions;
[1055]468 G4int nDERegions;
469 G4bool* idxSCoffRegions;
470 G4bool* idxDERegions;
[961]471
[819]472 std::vector<G4VEnergyLossProcess*> scProcesses;
473 G4int nProcesses;
474
475 // tables and vectors
476 G4PhysicsTable* theDEDXTable;
477 G4PhysicsTable* theDEDXSubTable;
478 G4PhysicsTable* theDEDXunRestrictedTable;
479 G4PhysicsTable* theIonisationTable;
480 G4PhysicsTable* theIonisationSubTable;
481 G4PhysicsTable* theRangeTableForLoss;
482 G4PhysicsTable* theCSDARangeTable;
483 G4PhysicsTable* theSecondaryRangeTable;
484 G4PhysicsTable* theInverseRangeTable;
485 G4PhysicsTable* theLambdaTable;
486 G4PhysicsTable* theSubLambdaTable;
487 G4double* theDEDXAtMaxEnergy;
488 G4double* theRangeAtMaxEnergy;
489 G4double* theEnergyOfCrossSectionMax;
490 G4double* theCrossSectionMax;
491
492 const G4DataVector* theCuts;
493 const G4DataVector* theSubCuts;
494
495 const G4ParticleDefinition* baseParticle;
496
497 G4int nBins;
498 G4int nBinsCSDA;
499
500 G4double lowestKinEnergy;
501 G4double minKinEnergy;
502 G4double maxKinEnergy;
503 G4double maxKinEnergyCSDA;
504
505 G4double linLossLimit;
506 G4double minSubRange;
507 G4double dRoverRange;
508 G4double finalRange;
509 G4double lambdaFactor;
510
511 G4bool lossFluctuationFlag;
512 G4bool rndmStepFlag;
513 G4bool tablesAreBuilt;
514 G4bool integral;
[961]515 G4bool isIon;
[819]516 G4bool isIonisation;
517 G4bool useSubCutoff;
[1055]518 G4bool useDeexcitation;
[819]519
[961]520protected:
[819]521
[961]522 G4ParticleChangeForLoss fParticleChange;
[819]523
[961]524 // ======== Cashed values - may be state dependent ================
[819]525
[961]526private:
[819]527
[961]528 std::vector<G4DynamicParticle*> secParticles;
529 std::vector<G4Track*> scTracks;
[819]530
[961]531 const G4ParticleDefinition* particle;
[819]532
[961]533 G4VEmModel* currentModel;
534 const G4Material* currentMaterial;
535 const G4MaterialCutsCouple* currentCouple;
536 size_t currentMaterialIndex;
537
538 G4int nWarnings;
539
540 G4double massRatio;
541 G4double reduceFactor;
542 G4double chargeSqRatio;
543
544 G4double preStepLambda;
545 G4double fRange;
546 G4double preStepKinEnergy;
547 G4double preStepScaledEnergy;
548 G4double mfpKinEnergy;
549
550 G4GPILSelection aGPILSelection;
551
552};
553
[819]554//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[961]555//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[819]556
[1055]557inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const
[819]558{
[1055]559 return currentMaterialIndex;
[819]560}
561
562//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1055]563
564inline G4double G4VEnergyLossProcess::GetCurrentRange() const
[819]565{
[1055]566 return fRange;
[819]567}
568
569//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1007]570
[1055]571inline void G4VEnergyLossProcess::SelectModel(G4double kinEnergy)
[819]572{
[1055]573 currentModel = modelManager->SelectModel(kinEnergy, currentMaterialIndex);
574 currentModel->SetCurrentCouple(currentCouple);
[819]575}
576
577//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
578
[1055]579inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial(
580 G4double kinEnergy, size_t& idx) const
[819]581{
[1055]582 return modelManager->SelectModel(kinEnergy, idx);
[819]583}
584
585//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
586
[1055]587inline void G4VEnergyLossProcess::SetFluctModel(G4VEmFluctuationModel* p)
[819]588{
[1055]589 fluctModel = p;
[819]590}
591
592//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
593
[1055]594inline G4VEmFluctuationModel* G4VEnergyLossProcess::FluctModel()
[819]595{
[1055]596 return fluctModel;
[819]597}
598
599//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
600
[1055]601inline void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p)
[819]602{
[1055]603 particle = p;
[819]604}
605
606//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
607
[1055]608inline void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p)
[819]609{
[1055]610 secondaryParticle = p;
[819]611}
612
613//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
614
[1055]615inline void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p)
[819]616{
[1055]617 baseParticle = p;
[819]618}
619
620//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
621
[1055]622inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const
[819]623{
[1055]624 return particle;
[819]625}
626
627//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
628
[1055]629inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const
[819]630{
[1055]631 return baseParticle;
[819]632}
633
634//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
635
[1055]636inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const
[819]637{
[1055]638 return secondaryParticle;
[819]639}
640
641//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
642
[1055]643inline void G4VEnergyLossProcess::SetLossFluctuations(G4bool val)
[819]644{
[1055]645 lossFluctuationFlag = val;
[819]646}
647
648//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
649
[1055]650inline void G4VEnergyLossProcess::SetRandomStep(G4bool val)
[819]651{
[1055]652 rndmStepFlag = val;
[819]653}
654
655//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
656
[1055]657inline void G4VEnergyLossProcess::SetIntegral(G4bool val)
[819]658{
[1055]659 integral = val;
[819]660}
661
662//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1055]663
664inline G4bool G4VEnergyLossProcess::IsIntegral() const
[819]665{
[1055]666 return integral;
[819]667}
668
669//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
670
[1055]671inline void G4VEnergyLossProcess::SetIonisation(G4bool val)
[819]672{
[1055]673 isIonisation = val;
674 if(val) aGPILSelection = CandidateForSelection;
675 else aGPILSelection = NotCandidateForSelection;
[819]676}
677
678//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
679
[1055]680inline G4bool G4VEnergyLossProcess::IsIonisationProcess() const
[819]681{
[1055]682 return isIonisation;
[819]683}
684
685//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
686
[1055]687inline void G4VEnergyLossProcess::SetLinearLossLimit(G4double val)
[819]688{
[1055]689 linLossLimit = val;
[819]690}
691
692//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
693
[1055]694inline void G4VEnergyLossProcess::SetMinSubRange(G4double val)
[819]695{
[1055]696 minSubRange = val;
[819]697}
698
699//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
700
[1055]701inline void G4VEnergyLossProcess::SetLambdaFactor(G4double val)
[819]702{
[1055]703 if(val > 0.0 && val <= 1.0) lambdaFactor = val;
[819]704}
705
706//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
707
[1055]708void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2)
[819]709{
[1055]710 dRoverRange = v1;
711 finalRange = v2;
712 if (dRoverRange > 0.999) dRoverRange = 1.0;
713 currentCouple = 0;
714 mfpKinEnergy = DBL_MAX;
[819]715}
716
717//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1007]718
[1055]719inline G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const
[819]720{
[1055]721 return nSCoffRegions;
[819]722}
723
724//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
725
[1055]726inline G4int G4VEnergyLossProcess::NumberOfDERegions() const
[819]727{
[1055]728 return nDERegions;
[819]729}
730
731//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
732
[1055]733inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins)
[819]734{
[1055]735 nBins = nbins;
[819]736}
737
738//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
739
[1055]740inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins)
[961]741{
[1055]742 nBins = nbins;
[961]743}
[819]744
745//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
746
[1055]747inline void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins)
[819]748{
[1055]749 nBinsCSDA = nbins;
[819]750}
751
752//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
753
[1055]754inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e)
[819]755{
[1055]756 minKinEnergy = e;
[819]757}
758
759//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
760
[1055]761inline G4double G4VEnergyLossProcess::MinKinEnergy() const
[819]762{
[1055]763 return minKinEnergy;
[819]764}
765
766//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
767
[1055]768inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e)
[819]769{
[1055]770 maxKinEnergy = e;
771 if(e < maxKinEnergyCSDA) maxKinEnergyCSDA = e;
[819]772}
773
774//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
775
[1055]776inline G4double G4VEnergyLossProcess::MaxKinEnergy() const
[819]777{
[1055]778 return maxKinEnergy;
[819]779}
780
781//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
782
[1055]783inline void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e)
[819]784{
[1055]785 maxKinEnergyCSDA = e;
[819]786}
787
788//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
789
[1055]790inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy,
791 const G4MaterialCutsCouple* couple)
[819]792{
[1055]793 DefineMaterial(couple);
794 return GetDEDXForScaledEnergy(kineticEnergy*massRatio);
[819]795}
796
797//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
798
[1055]799inline G4double G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy,
800 const G4MaterialCutsCouple* couple)
[819]801{
[1055]802 DefineMaterial(couple);
803 return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio);
[819]804}
805
806//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
807
[1055]808inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy,
809 const G4MaterialCutsCouple* couple)
[819]810{
[1055]811 G4double x = fRange;
812 if(kineticEnergy != preStepKinEnergy || couple != currentCouple) {
813 DefineMaterial(couple);
814 if(theCSDARangeTable)
815 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio)
816 * reduceFactor;
817 else if(theRangeTableForLoss)
818 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor;
819 }
820 return x;
[819]821}
822
823//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
824
[1055]825inline G4double G4VEnergyLossProcess::GetCSDARange(
826 G4double& kineticEnergy, const G4MaterialCutsCouple* couple)
[819]827{
[1055]828 DefineMaterial(couple);
829 G4double x = DBL_MAX;
830 if(theCSDARangeTable)
831 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio)
832 * reduceFactor;
833 return x;
[819]834}
835
836//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[961]837
[1055]838inline G4double G4VEnergyLossProcess::GetRangeForLoss(
839 G4double& kineticEnergy,
840 const G4MaterialCutsCouple* couple)
[819]841{
[1055]842 DefineMaterial(couple);
843 G4double x = DBL_MAX;
844 if(theRangeTableForLoss)
845 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor;
846 // G4cout << "Range from " << GetProcessName()
847 // << " e= " << kineticEnergy << " r= " << x << G4endl;
848 return x;
[819]849}
850
851//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1005]852
[1055]853inline G4double G4VEnergyLossProcess::GetKineticEnergy(
854 G4double& range,
855 const G4MaterialCutsCouple* couple)
[991]856{
[1055]857 DefineMaterial(couple);
858 G4double r = range/reduceFactor;
859 G4double e = ScaledKinEnergyForLoss(r)/massRatio;
860 return e;
[991]861}
[819]862
[991]863//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
864
[1055]865inline G4double G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy,
866 const G4MaterialCutsCouple* couple)
[819]867{
[1055]868 DefineMaterial(couple);
869 G4double x = 0.0;
870 if(theLambdaTable) x = GetLambdaForScaledEnergy(kineticEnergy*massRatio);
871 return x;
[819]872}
873
874//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
875
[1055]876inline G4bool G4VEnergyLossProcess::TablesAreBuilt() const
[819]877{
[1055]878 return tablesAreBuilt;
[819]879}
880
881//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1005]882
[1055]883inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const
[991]884{
[1055]885 return theDEDXTable;
[991]886}
[819]887
[991]888//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
889
[1055]890inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const
[819]891{
[1055]892 return theDEDXSubTable;
[819]893}
894
895//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
896
[1055]897inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const
[819]898{
[1055]899 return theDEDXunRestrictedTable;
[819]900}
901
902//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
903
[1055]904inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const
[819]905{
[1055]906 G4PhysicsTable* t = theDEDXTable;
907 if(theIonisationTable) t = theIonisationTable;
908 return t;
[819]909}
910
911//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
912
[1055]913inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const
[819]914{
[1055]915 G4PhysicsTable* t = theDEDXSubTable;
916 if(theIonisationSubTable) t = theIonisationSubTable;
917 return t;
[819]918}
919
920//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
921
[1055]922inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const
[819]923{
[1055]924 return theCSDARangeTable;
[819]925}
926
927//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
928
[1055]929inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const
[819]930{
[1055]931 return theRangeTableForLoss;
[819]932}
933
934//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
935
[1055]936inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const
[819]937{
[1055]938 return theInverseRangeTable;
[819]939}
940
941//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
942
[1055]943inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable()
[819]944{
[1055]945 return theLambdaTable;
[819]946}
947
948//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
949
[1055]950inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable()
[819]951{
[1055]952 return theSubLambdaTable;
[819]953}
954
955//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
956
[1055]957inline G4double G4VEnergyLossProcess::SampleRange()
[819]958{
[1055]959 G4double e = amu_c2*preStepKinEnergy/particle->GetPDGMass();
960 G4bool b;
961 G4double s = fRange*std::pow(10.,vstrag->GetValue(e,b));
962 G4double x = fRange + G4RandGauss::shoot(0.0,s);
963 if(x > 0.0) fRange = x;
964 return fRange;
[819]965}
966
967//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
968
[1055]969inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio,
970 G4double charge2ratio)
[819]971{
[1055]972 massRatio = massratio;
973 chargeSqRatio = charge2ratio;
974 reduceFactor = 1.0/(chargeSqRatio*massRatio);
[819]975}
976
977//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
978
[1055]979inline void G4VEnergyLossProcess::DefineMaterial(
980 const G4MaterialCutsCouple* couple)
[819]981{
[1055]982 if(couple != currentCouple) {
983 currentCouple = couple;
984 currentMaterial = couple->GetMaterial();
985 currentMaterialIndex = couple->GetIndex();
986 mfpKinEnergy = DBL_MAX;
987 }
[819]988}
989
990//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
991
[1055]992inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e)
[819]993{
[1055]994 G4bool b;
995 G4double x =
996 ((*theDEDXTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio;
997 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
998 return x;
[819]999}
1000
1001//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1002
[1055]1003inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e)
[819]1004{
[1055]1005 G4bool b;
1006 G4double x =
1007 ((*theDEDXSubTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio;
1008 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1009 return x;
[819]1010}
1011
1012//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1013
[1055]1014inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e)
[819]1015{
[1055]1016 G4bool b;
1017 G4double x = 0.0;
1018 // if(theIonisationTable) {
1019 x = ((*theIonisationTable)[currentMaterialIndex]->GetValue(e, b))
1020 *chargeSqRatio;
1021 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1022 //}
1023 return x;
[819]1024}
1025
1026//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1027
[1055]1028inline
1029G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e)
[819]1030{
[1055]1031 G4bool b;
1032 G4double x = 0.0;
1033 //if(theIonisationSubTable) {
1034 x = ((*theIonisationSubTable)[currentMaterialIndex]->GetValue(e, b))
1035 *chargeSqRatio;
1036 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1037 //}
1038 return x;
[819]1039}
1040
1041//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1042
[1055]1043inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e)
[819]1044{
[1055]1045 G4bool b;
1046 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->GetValue(e, b);
1047 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1048 return x;
[819]1049}
1050
1051//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1052
[1055]1053inline G4double G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy(
1054 G4double e)
[819]1055{
[1055]1056 G4bool b;
1057 G4double x;
[819]1058
[1055]1059 if (e < maxKinEnergyCSDA) {
1060 x = ((*theCSDARangeTable)[currentMaterialIndex])->GetValue(e, b);
1061 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1062 } else {
1063 x = theRangeAtMaxEnergy[currentMaterialIndex] +
1064 (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[currentMaterialIndex];
1065 }
1066 return x;
[819]1067}
1068
1069//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1070
[1055]1071inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r)
[819]1072{
[1055]1073 G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex];
1074 G4double rmin = v->GetLowEdgeEnergy(0);
1075 G4double e = 0.0;
1076 if(r >= rmin) {
1077 G4bool b;
1078 e = v->GetValue(r, b);
1079 } else if(r > 0.0) {
1080 G4double x = r/rmin;
1081 e = minKinEnergy*x*x;
1082 }
1083 return e;
[819]1084}
1085
1086//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1087
[1055]1088inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e)
[819]1089{
[1055]1090 G4bool b;
1091 return
1092 chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b));
[819]1093}
1094
1095//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1096
[1055]1097inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e)
[819]1098{
[1055]1099 mfpKinEnergy = theEnergyOfCrossSectionMax[currentMaterialIndex];
1100 if (e <= mfpKinEnergy) {
1101 preStepLambda = GetLambdaForScaledEnergy(e);
[819]1102
[1055]1103 } else {
1104 G4double e1 = e*lambdaFactor;
1105 if(e1 > mfpKinEnergy) {
1106 preStepLambda = GetLambdaForScaledEnergy(e);
1107 G4double preStepLambda1 = GetLambdaForScaledEnergy(e1);
1108 if(preStepLambda1 > preStepLambda) {
1109 mfpKinEnergy = e1;
1110 preStepLambda = preStepLambda1;
1111 }
1112 } else {
1113 preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex];
1114 }
1115 }
[819]1116}
1117
1118//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1119
1120#endif
Note: See TracBrowser for help on using the repository browser.