source: trunk/source/processes/electromagnetic/utils/include/G4VEnergyLossProcess.hh@ 1197

Last change on this file since 1197 was 1196, checked in by garnier, 16 years ago

update CVS release candidate geant4.9.3.01

File size: 36.1 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
[1196]26// $Id: G4VEnergyLossProcess.hh,v 1.89 2009/07/03 14:39:17 vnivanch Exp $
[819]27// GEANT4 tag $Name:
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class header file
32//
33//
34// File name: G4VEnergyLossProcess
35//
36// Author: Vladimir Ivanchenko on base of Laszlo Urban code
37//
38// Creation date: 03.01.2002
39//
40// Modifications:
41//
42// 26-12-02 Secondary production moved to derived classes (V.Ivanchenko)
43// 20-01-03 Migrade to cut per region (V.Ivanchenko)
44// 24-01-03 Make models region aware (V.Ivanchenko)
45// 05-02-03 Fix compilation warnings (V.Ivanchenko)
46// 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko)
47// 17-02-03 Fix problem of store/restore tables (V.Ivanchenko)
48// 26-02-03 Region dependent step limit (V.Ivanchenko)
49// 26-03-03 Add GetDEDXDispersion (V.Ivanchenko)
50// 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko)
51// 13-05-03 Add calculation of precise range (V.Ivanchenko)
52// 21-07-03 Add UpdateEmModel method (V.Ivanchenko)
53// 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko)
54// 14-01-04 Activate precise range calculation (V.Ivanchenko)
55// 10-03-04 Fix problem of step limit calculation (V.Ivanchenko)
56// 30-06-04 make destructor virtual (V.Ivanchenko)
57// 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko)
58// 03-08-04 Add DEDX table to all processes for control on integral range(VI)
59// 06-08-04 Clear up names of member functions (V.Ivanchenko)
60// 27-08-04 Add NeedBuildTables method (V.Ivanchneko)
61// 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko)
62// 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko)
63// 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
64// 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko)
65// 10-01-05 Remove SetStepLimits (V.Ivanchenko)
66// 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko)
67// 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko)
68// 20-01-06 Introduce G4EmTableType and reducing number of methods (VI)
69// 26-01-06 Add public method GetCSDARange (V.Ivanchenko)
70// 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko)
71// 23-03-06 Use isIonisation flag (V.Ivanchenko)
72// 13-05-06 Add method to access model by index (V.Ivanchenko)
73// 14-01-07 add SetEmModel(index) and SetFluctModel() (mma)
74// 15-01-07 Add separate ionisation tables and reorganise get/set methods for
75// dedx tables (V.Ivanchenko)
76// 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko)
77// 27-07-07 use stl vector for emModels instead of C-array (V.Ivanchenko)
78// 25-09-07 More accurate handling zero xsect in
79// PostStepGetPhysicalInteractionLength (V.Ivanchenko)
80// 27-10-07 Virtual functions moved to source (V.Ivanchenko)
[961]81// 15-07-08 Reorder class members for further multi-thread development (VI)
[819]82//
83// Class Description:
84//
85// It is the unified energy loss process it calculates the continuous
86// energy loss for charged particles using a set of Energy Loss
87// models valid for different energy regions. There are a possibility
88// to create and access to dE/dx and range tables, or to calculate
89// that information on fly.
90
91// -------------------------------------------------------------------
92//
93
94#ifndef G4VEnergyLossProcess_h
95#define G4VEnergyLossProcess_h 1
96
97#include "G4VContinuousDiscreteProcess.hh"
98#include "globals.hh"
99#include "G4Material.hh"
100#include "G4MaterialCutsCouple.hh"
101#include "G4Track.hh"
102#include "G4EmModelManager.hh"
103#include "G4UnitsTable.hh"
104#include "G4ParticleChangeForLoss.hh"
105#include "G4EmTableType.hh"
106#include "G4PhysicsTable.hh"
107#include "G4PhysicsVector.hh"
108
109class G4Step;
110class G4ParticleDefinition;
111class G4VEmModel;
112class G4VEmFluctuationModel;
113class G4DataVector;
114class G4Region;
115class G4SafetyHelper;
116
117//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
118
119class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess
120{
121public:
122
123 G4VEnergyLossProcess(const G4String& name = "EnergyLoss",
124 G4ProcessType type = fElectromagnetic);
125
126 virtual ~G4VEnergyLossProcess();
127
[1055]128private:
129 // clean vectors and arrays
130 void Clean();
131
[819]132 //------------------------------------------------------------------------
133 // Virtual methods to be implemented in concrete processes
134 //------------------------------------------------------------------------
135
[1055]136public:
[819]137 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0;
138
139 virtual void PrintInfo() = 0;
140
141protected:
142
143 virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*,
144 const G4ParticleDefinition*) = 0;
145
146 //------------------------------------------------------------------------
147 // Methods with standard implementation; may be overwritten if needed
148 //------------------------------------------------------------------------
149
150 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*,
151 const G4Material*, G4double cut);
152
153 //------------------------------------------------------------------------
[1055]154 // Virtual methods implementation common to all EM ContinuousDiscrete
155 // processes. Further inheritance is not assumed
[819]156 //------------------------------------------------------------------------
[961]157
[819]158public:
159
[1055]160 // prepare all tables
[819]161 void PreparePhysicsTable(const G4ParticleDefinition&);
162
[1055]163 // build all tables
[819]164 void BuildPhysicsTable(const G4ParticleDefinition&);
165
[1055]166 // build a table
167 G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted);
168
169 // build a table
170 G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted);
171
172 // summary printout after initialisation
173 void PrintInfoDefinition();
174
175 // Add subcutoff option for the region
176 void ActivateSubCutoff(G4bool val, const G4Region* region = 0);
177
178 // Activate deexcitation code for region
179 void ActivateDeexcitation(G4bool, const G4Region* region = 0);
180
181 // Step limit from AlongStep
[961]182 G4double AlongStepGetPhysicalInteractionLength(const G4Track&,
183 G4double previousStepSize,
184 G4double currentMinimumStep,
185 G4double& currentSafety,
186 G4GPILSelection* selection);
187
[1055]188 // Step limit from cross section
[961]189 G4double PostStepGetPhysicalInteractionLength(const G4Track& track,
190 G4double previousStepSize,
191 G4ForceCondition* condition);
192
[1055]193 // AlongStep computations
[819]194 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&);
195
[1055]196 // Sampling of secondaries in vicinity of geometrical boundary
197 void SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&,
198 G4VEmModel* model, G4int matIdx,
199 G4double& extraEdep);
200
201 // PostStep sampling of secondaries
[819]202 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&);
203
[1055]204 // Store all PhysicsTable in files.
205 // Return false in case of any fatal failure at I/O
[819]206 G4bool StorePhysicsTable(const G4ParticleDefinition*,
207 const G4String& directory,
208 G4bool ascii = false);
209
[1055]210 // Retrieve all Physics from a files.
211 // Return true if all the Physics Table are built.
212 // Return false if any fatal failure.
[819]213 G4bool RetrievePhysicsTable(const G4ParticleDefinition*,
214 const G4String& directory,
215 G4bool ascii);
216
[1055]217private:
218 // store a table
219 G4bool StoreTable(const G4ParticleDefinition* p,
220 G4PhysicsTable*, G4bool ascii,
221 const G4String& directory,
222 const G4String& tname);
[819]223
[1055]224 // retrieve a table
225 G4bool RetrieveTable(const G4ParticleDefinition* p,
226 G4PhysicsTable*, G4bool ascii,
227 const G4String& directory,
228 const G4String& tname,
229 G4bool mandatory);
[819]230
231 //------------------------------------------------------------------------
[1055]232 // Public interface to cross section, mfp and sampling of fluctuations
233 // These methods are not used in run time
[819]234 //------------------------------------------------------------------------
235
236public:
[1055]237 // access to dispersion of restricted energy loss
[819]238 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple,
239 const G4DynamicParticle* dp,
240 G4double length);
241
[1055]242 // Access to cross section table
243 G4double CrossSectionPerVolume(G4double kineticEnergy,
244 const G4MaterialCutsCouple* couple);
[819]245
[1055]246 // access to cross section
247 G4double MeanFreePath(const G4Track& track);
[819]248
[1055]249 // access to step limit
250 G4double ContinuousStepLimit(const G4Track& track,
251 G4double previousStepSize,
252 G4double currentMinimumStep,
253 G4double& currentSafety);
[819]254
[1055]255protected:
[819]256
[1055]257 // implementation of the pure virtual method
258 G4double GetMeanFreePath(const G4Track& track,
259 G4double previousStepSize,
260 G4ForceCondition* condition);
[819]261
[1055]262 // implementation of the pure virtual method
263 G4double GetContinuousStepLimit(const G4Track& track,
264 G4double previousStepSize,
265 G4double currentMinimumStep,
266 G4double& currentSafety);
[819]267
[1055]268 //------------------------------------------------------------------------
269 // Run time method which may be also used by derived processes
270 //------------------------------------------------------------------------
[819]271
[1055]272 // creeation of an empty vector for cross section
273 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*,
274 G4double cut);
[819]275
[1055]276 inline size_t CurrentMaterialCutsCoupleIndex() const;
[819]277
[1055]278 inline G4double GetCurrentRange() const;
[819]279
280 //------------------------------------------------------------------------
[1055]281 // Specific methods to set, access, modify models
[819]282 //------------------------------------------------------------------------
283
[1055]284 // Select model in run time
285 inline void SelectModel(G4double kinEnergy);
[819]286
[1055]287public:
288 // Select model by energy and region index
289 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy,
290 size_t& idx) const;
[819]291
[1055]292 // Add EM model coupled with fluctuation model for region, smaller value
293 // of order defines which pair of models will be selected for a given
294 // energy interval
295 void AddEmModel(G4int, G4VEmModel*,
296 G4VEmFluctuationModel* fluc = 0,
297 const G4Region* region = 0);
[819]298
[1055]299 // Define new energy range for the model identified by the name
300 void UpdateEmModel(const G4String&, G4double, G4double);
301
[819]302 // Assign a model to a process
[1055]303 void SetEmModel(G4VEmModel*, G4int index=1);
[819]304
305 // return the assigned model
[1055]306 G4VEmModel* EmModel(G4int index=1);
[819]307
[1055]308 // Access to models
309 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false);
310
311 G4int NumberOfModels();
312
[819]313 // Assign a fluctuation model to a process
[1055]314 void SetFluctModel(G4VEmFluctuationModel*);
[819]315
316 // return the assigned fluctuation model
317 inline G4VEmFluctuationModel* FluctModel();
318
[1055]319 //------------------------------------------------------------------------
320 // Define and access particle type
321 //------------------------------------------------------------------------
[819]322
[1055]323protected:
324 inline void SetParticle(const G4ParticleDefinition* p);
325 inline void SetSecondaryParticle(const G4ParticleDefinition* p);
[819]326
[1055]327public:
328 inline void SetBaseParticle(const G4ParticleDefinition* p);
329 inline const G4ParticleDefinition* Particle() const;
330 inline const G4ParticleDefinition* BaseParticle() const;
331 inline const G4ParticleDefinition* SecondaryParticle() const;
[819]332
333 //------------------------------------------------------------------------
[1055]334 // Get/set parameters to configure the process at initialisation time
[819]335 //------------------------------------------------------------------------
336
[1055]337 // Add subcutoff process (bremsstrahlung) to sample secondary
338 // particle production in vicinity of the geometry boundary
339 void AddCollaborativeProcess(G4VEnergyLossProcess*);
340
[819]341 inline void SetLossFluctuations(G4bool val);
342 inline void SetRandomStep(G4bool val);
[1055]343
[819]344 inline void SetIntegral(G4bool val);
345 inline G4bool IsIntegral() const;
346
347 // Set/Get flag "isIonisation"
348 inline void SetIonisation(G4bool val);
349 inline G4bool IsIonisationProcess() const;
350
351 // Redefine parameteters for stepping control
352 //
353 inline void SetLinearLossLimit(G4double val);
354 inline void SetMinSubRange(G4double val);
[1055]355 inline void SetLambdaFactor(G4double val);
[1007]356 inline void SetStepFunction(G4double v1, G4double v2);
[1196]357 inline void SetLowestEnergyLimit(G4double);
[819]358
359 inline G4int NumberOfSubCutoffRegions() const;
[1055]360 inline G4int NumberOfDERegions() const;
[819]361
362 //------------------------------------------------------------------------
[1055]363 // Specific methods to path Physics Tables to the process
[819]364 //------------------------------------------------------------------------
365
[1055]366 void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType);
367 void SetCSDARangeTable(G4PhysicsTable* pRange);
368 void SetRangeTableForLoss(G4PhysicsTable* p);
369 void SetSecondaryRangeTable(G4PhysicsTable* p);
370 void SetInverseRangeTable(G4PhysicsTable* p);
[819]371
[1055]372 void SetLambdaTable(G4PhysicsTable* p);
373 void SetSubLambdaTable(G4PhysicsTable* p);
[819]374
[1055]375 // Binning for dEdx, range, inverse range and labda tables
376 inline void SetDEDXBinning(G4int nbins);
377 inline void SetLambdaBinning(G4int nbins);
[819]378
[1055]379 // Binning for dEdx, range, and inverse range tables
380 inline void SetDEDXBinningForCSDARange(G4int nbins);
[819]381
[1055]382 // Min kinetic energy for tables
383 inline void SetMinKinEnergy(G4double e);
384 inline G4double MinKinEnergy() const;
[819]385
[1055]386 // Max kinetic energy for tables
387 inline void SetMaxKinEnergy(G4double e);
388 inline G4double MaxKinEnergy() const;
[819]389
[1055]390 // Max kinetic energy for tables
391 inline void SetMaxKinEnergyForCSDARange(G4double e);
[819]392
[1055]393 // Return values for given G4MaterialCutsCouple
394 inline G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*);
395 inline G4double GetDEDXForSubsec(G4double& kineticEnergy,
396 const G4MaterialCutsCouple*);
397 inline G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*);
398 inline G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*);
399 inline G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*);
400 inline G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*);
401 inline G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*);
[819]402
[1055]403 inline G4bool TablesAreBuilt() const;
[819]404
[1055]405 // Access to specific tables
406 inline G4PhysicsTable* DEDXTable() const;
407 inline G4PhysicsTable* DEDXTableForSubsec() const;
408 inline G4PhysicsTable* DEDXunRestrictedTable() const;
409 inline G4PhysicsTable* IonisationTable() const;
410 inline G4PhysicsTable* IonisationTableForSubsec() const;
411 inline G4PhysicsTable* CSDARangeTable() const;
412 inline G4PhysicsTable* RangeTableForLoss() const;
413 inline G4PhysicsTable* InverseRangeTable() const;
414 inline G4PhysicsTable* LambdaTable();
415 inline G4PhysicsTable* SubLambdaTable();
[819]416
[961]417 //------------------------------------------------------------------------
[1055]418 // Run time method for simulation of ionisation
[961]419 //------------------------------------------------------------------------
[819]420
[1055]421 // sample range at the end of a step
422 inline G4double SampleRange();
[819]423
[1055]424 // Set scaling parameters for ions is needed to G4EmCalculator
425 inline void SetDynamicMassCharge(G4double massratio, G4double charge2ratio);
[819]426
[1055]427private:
[819]428
[961]429 // define material and indexes
430 inline void DefineMaterial(const G4MaterialCutsCouple* couple);
[819]431
[1055]432 //------------------------------------------------------------------------
433 // Compute values using scaling relation, mass and charge of based particle
434 //------------------------------------------------------------------------
435
[819]436 inline G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy);
437 inline G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy);
438 inline G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy);
439 inline G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy);
440 inline G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy);
441 inline G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy);
[1055]442 inline G4double ScaledKinEnergyForLoss(G4double range);
[1007]443 inline G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy);
[819]444 inline void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy);
445
446 // hide assignment operator
447 G4VEnergyLossProcess(G4VEnergyLossProcess &);
448 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right);
449
[961]450 // ======== Parameters of the class fixed at construction =========
[819]451
[961]452 G4EmModelManager* modelManager;
453 G4SafetyHelper* safetyHelper;
[819]454
[961]455 const G4ParticleDefinition* secondaryParticle;
456 const G4ParticleDefinition* theElectron;
457 const G4ParticleDefinition* thePositron;
458 const G4ParticleDefinition* theGenericIon;
[819]459
[961]460 G4PhysicsVector* vstrag;
[819]461
[961]462 // ======== Parameters of the class fixed at initialisation =======
463
[819]464 std::vector<G4VEmModel*> emModels;
465 G4VEmFluctuationModel* fluctModel;
466 std::vector<const G4Region*> scoffRegions;
[1055]467 std::vector<const G4Region*> deRegions;
[819]468 G4int nSCoffRegions;
[1055]469 G4int nDERegions;
470 G4bool* idxSCoffRegions;
471 G4bool* idxDERegions;
[961]472
[819]473 std::vector<G4VEnergyLossProcess*> scProcesses;
474 G4int nProcesses;
475
476 // tables and vectors
477 G4PhysicsTable* theDEDXTable;
478 G4PhysicsTable* theDEDXSubTable;
479 G4PhysicsTable* theDEDXunRestrictedTable;
480 G4PhysicsTable* theIonisationTable;
481 G4PhysicsTable* theIonisationSubTable;
482 G4PhysicsTable* theRangeTableForLoss;
483 G4PhysicsTable* theCSDARangeTable;
484 G4PhysicsTable* theSecondaryRangeTable;
485 G4PhysicsTable* theInverseRangeTable;
486 G4PhysicsTable* theLambdaTable;
487 G4PhysicsTable* theSubLambdaTable;
488 G4double* theDEDXAtMaxEnergy;
489 G4double* theRangeAtMaxEnergy;
490 G4double* theEnergyOfCrossSectionMax;
491 G4double* theCrossSectionMax;
492
493 const G4DataVector* theCuts;
494 const G4DataVector* theSubCuts;
495
496 const G4ParticleDefinition* baseParticle;
497
498 G4int nBins;
499 G4int nBinsCSDA;
500
501 G4double lowestKinEnergy;
502 G4double minKinEnergy;
503 G4double maxKinEnergy;
504 G4double maxKinEnergyCSDA;
505
506 G4double linLossLimit;
507 G4double minSubRange;
508 G4double dRoverRange;
509 G4double finalRange;
510 G4double lambdaFactor;
511
512 G4bool lossFluctuationFlag;
513 G4bool rndmStepFlag;
514 G4bool tablesAreBuilt;
515 G4bool integral;
[961]516 G4bool isIon;
[819]517 G4bool isIonisation;
518 G4bool useSubCutoff;
[1055]519 G4bool useDeexcitation;
[819]520
[961]521protected:
[819]522
[961]523 G4ParticleChangeForLoss fParticleChange;
[819]524
[961]525 // ======== Cashed values - may be state dependent ================
[819]526
[961]527private:
[819]528
[961]529 std::vector<G4DynamicParticle*> secParticles;
530 std::vector<G4Track*> scTracks;
[819]531
[961]532 const G4ParticleDefinition* particle;
[819]533
[961]534 G4VEmModel* currentModel;
535 const G4Material* currentMaterial;
536 const G4MaterialCutsCouple* currentCouple;
537 size_t currentMaterialIndex;
538
539 G4int nWarnings;
540
541 G4double massRatio;
542 G4double reduceFactor;
543 G4double chargeSqRatio;
544
545 G4double preStepLambda;
546 G4double fRange;
547 G4double preStepKinEnergy;
548 G4double preStepScaledEnergy;
549 G4double mfpKinEnergy;
550
551 G4GPILSelection aGPILSelection;
552
553};
554
[819]555//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[961]556//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[819]557
[1055]558inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const
[819]559{
[1055]560 return currentMaterialIndex;
[819]561}
562
563//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1055]564
565inline G4double G4VEnergyLossProcess::GetCurrentRange() const
[819]566{
[1055]567 return fRange;
[819]568}
569
570//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1007]571
[1055]572inline void G4VEnergyLossProcess::SelectModel(G4double kinEnergy)
[819]573{
[1055]574 currentModel = modelManager->SelectModel(kinEnergy, currentMaterialIndex);
575 currentModel->SetCurrentCouple(currentCouple);
[819]576}
577
578//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
579
[1055]580inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial(
581 G4double kinEnergy, size_t& idx) const
[819]582{
[1055]583 return modelManager->SelectModel(kinEnergy, idx);
[819]584}
585
586//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
587
[1055]588inline void G4VEnergyLossProcess::SetFluctModel(G4VEmFluctuationModel* p)
[819]589{
[1055]590 fluctModel = p;
[819]591}
592
593//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
594
[1055]595inline G4VEmFluctuationModel* G4VEnergyLossProcess::FluctModel()
[819]596{
[1055]597 return fluctModel;
[819]598}
599
600//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
601
[1055]602inline void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p)
[819]603{
[1055]604 particle = p;
[819]605}
606
607//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
608
[1055]609inline void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p)
[819]610{
[1055]611 secondaryParticle = p;
[819]612}
613
614//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
615
[1055]616inline void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p)
[819]617{
[1055]618 baseParticle = p;
[819]619}
620
621//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
622
[1055]623inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const
[819]624{
[1055]625 return particle;
[819]626}
627
628//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
629
[1055]630inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const
[819]631{
[1055]632 return baseParticle;
[819]633}
634
635//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
636
[1055]637inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const
[819]638{
[1055]639 return secondaryParticle;
[819]640}
641
642//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
643
[1055]644inline void G4VEnergyLossProcess::SetLossFluctuations(G4bool val)
[819]645{
[1055]646 lossFluctuationFlag = val;
[819]647}
648
649//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
650
[1055]651inline void G4VEnergyLossProcess::SetRandomStep(G4bool val)
[819]652{
[1055]653 rndmStepFlag = val;
[819]654}
655
656//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
657
[1055]658inline void G4VEnergyLossProcess::SetIntegral(G4bool val)
[819]659{
[1055]660 integral = val;
[819]661}
662
663//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1055]664
665inline G4bool G4VEnergyLossProcess::IsIntegral() const
[819]666{
[1055]667 return integral;
[819]668}
669
670//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
671
[1055]672inline void G4VEnergyLossProcess::SetIonisation(G4bool val)
[819]673{
[1055]674 isIonisation = val;
675 if(val) aGPILSelection = CandidateForSelection;
676 else aGPILSelection = NotCandidateForSelection;
[819]677}
678
679//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
680
[1055]681inline G4bool G4VEnergyLossProcess::IsIonisationProcess() const
[819]682{
[1055]683 return isIonisation;
[819]684}
685
686//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
687
[1055]688inline void G4VEnergyLossProcess::SetLinearLossLimit(G4double val)
[819]689{
[1055]690 linLossLimit = val;
[819]691}
692
693//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
694
[1055]695inline void G4VEnergyLossProcess::SetMinSubRange(G4double val)
[819]696{
[1055]697 minSubRange = val;
[819]698}
699
700//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
701
[1055]702inline void G4VEnergyLossProcess::SetLambdaFactor(G4double val)
[819]703{
[1055]704 if(val > 0.0 && val <= 1.0) lambdaFactor = val;
[819]705}
706
707//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
708
[1055]709void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2)
[819]710{
[1055]711 dRoverRange = v1;
712 finalRange = v2;
713 if (dRoverRange > 0.999) dRoverRange = 1.0;
714 currentCouple = 0;
715 mfpKinEnergy = DBL_MAX;
[819]716}
717
718//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1007]719
[1196]720inline void G4VEnergyLossProcess::SetLowestEnergyLimit(G4double val)
721{
722 lowestKinEnergy = val;
723}
724
725//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
726
[1055]727inline G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const
[819]728{
[1055]729 return nSCoffRegions;
[819]730}
731
732//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
733
[1055]734inline G4int G4VEnergyLossProcess::NumberOfDERegions() const
[819]735{
[1055]736 return nDERegions;
[819]737}
738
739//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
740
[1055]741inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins)
[819]742{
[1055]743 nBins = nbins;
[819]744}
745
746//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
747
[1055]748inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins)
[961]749{
[1055]750 nBins = nbins;
[961]751}
[819]752
753//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
754
[1055]755inline void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins)
[819]756{
[1055]757 nBinsCSDA = nbins;
[819]758}
759
760//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
761
[1055]762inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e)
[819]763{
[1055]764 minKinEnergy = e;
[819]765}
766
767//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
768
[1055]769inline G4double G4VEnergyLossProcess::MinKinEnergy() const
[819]770{
[1055]771 return minKinEnergy;
[819]772}
773
774//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
775
[1055]776inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e)
[819]777{
[1055]778 maxKinEnergy = e;
779 if(e < maxKinEnergyCSDA) maxKinEnergyCSDA = e;
[819]780}
781
782//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
783
[1055]784inline G4double G4VEnergyLossProcess::MaxKinEnergy() const
[819]785{
[1055]786 return maxKinEnergy;
[819]787}
788
789//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
790
[1055]791inline void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e)
[819]792{
[1055]793 maxKinEnergyCSDA = e;
[819]794}
795
796//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
797
[1055]798inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy,
799 const G4MaterialCutsCouple* couple)
[819]800{
[1055]801 DefineMaterial(couple);
802 return GetDEDXForScaledEnergy(kineticEnergy*massRatio);
[819]803}
804
805//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
806
[1055]807inline G4double G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy,
808 const G4MaterialCutsCouple* couple)
[819]809{
[1055]810 DefineMaterial(couple);
811 return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio);
[819]812}
813
814//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
815
[1055]816inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy,
817 const G4MaterialCutsCouple* couple)
[819]818{
[1055]819 G4double x = fRange;
820 if(kineticEnergy != preStepKinEnergy || couple != currentCouple) {
821 DefineMaterial(couple);
822 if(theCSDARangeTable)
823 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio)
824 * reduceFactor;
825 else if(theRangeTableForLoss)
826 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor;
827 }
828 return x;
[819]829}
830
831//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
832
[1055]833inline G4double G4VEnergyLossProcess::GetCSDARange(
834 G4double& kineticEnergy, const G4MaterialCutsCouple* couple)
[819]835{
[1055]836 DefineMaterial(couple);
837 G4double x = DBL_MAX;
838 if(theCSDARangeTable)
839 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio)
840 * reduceFactor;
841 return x;
[819]842}
843
844//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[961]845
[1055]846inline G4double G4VEnergyLossProcess::GetRangeForLoss(
847 G4double& kineticEnergy,
848 const G4MaterialCutsCouple* couple)
[819]849{
[1055]850 DefineMaterial(couple);
851 G4double x = DBL_MAX;
852 if(theRangeTableForLoss)
853 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor;
854 // G4cout << "Range from " << GetProcessName()
855 // << " e= " << kineticEnergy << " r= " << x << G4endl;
856 return x;
[819]857}
858
859//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1005]860
[1055]861inline G4double G4VEnergyLossProcess::GetKineticEnergy(
862 G4double& range,
863 const G4MaterialCutsCouple* couple)
[991]864{
[1055]865 DefineMaterial(couple);
866 G4double r = range/reduceFactor;
867 G4double e = ScaledKinEnergyForLoss(r)/massRatio;
868 return e;
[991]869}
[819]870
[991]871//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
872
[1055]873inline G4double G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy,
874 const G4MaterialCutsCouple* couple)
[819]875{
[1055]876 DefineMaterial(couple);
877 G4double x = 0.0;
878 if(theLambdaTable) x = GetLambdaForScaledEnergy(kineticEnergy*massRatio);
879 return x;
[819]880}
881
882//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
883
[1055]884inline G4bool G4VEnergyLossProcess::TablesAreBuilt() const
[819]885{
[1055]886 return tablesAreBuilt;
[819]887}
888
889//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1005]890
[1055]891inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const
[991]892{
[1055]893 return theDEDXTable;
[991]894}
[819]895
[991]896//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
897
[1055]898inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const
[819]899{
[1055]900 return theDEDXSubTable;
[819]901}
902
903//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
904
[1055]905inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const
[819]906{
[1055]907 return theDEDXunRestrictedTable;
[819]908}
909
910//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
911
[1055]912inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const
[819]913{
[1055]914 G4PhysicsTable* t = theDEDXTable;
915 if(theIonisationTable) t = theIonisationTable;
916 return t;
[819]917}
918
919//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
920
[1055]921inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const
[819]922{
[1055]923 G4PhysicsTable* t = theDEDXSubTable;
924 if(theIonisationSubTable) t = theIonisationSubTable;
925 return t;
[819]926}
927
928//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
929
[1055]930inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const
[819]931{
[1055]932 return theCSDARangeTable;
[819]933}
934
935//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
936
[1055]937inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const
[819]938{
[1055]939 return theRangeTableForLoss;
[819]940}
941
942//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
943
[1055]944inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const
[819]945{
[1055]946 return theInverseRangeTable;
[819]947}
948
949//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
950
[1055]951inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable()
[819]952{
[1055]953 return theLambdaTable;
[819]954}
955
956//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
957
[1055]958inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable()
[819]959{
[1055]960 return theSubLambdaTable;
[819]961}
962
963//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
964
[1055]965inline G4double G4VEnergyLossProcess::SampleRange()
[819]966{
[1055]967 G4double e = amu_c2*preStepKinEnergy/particle->GetPDGMass();
[1196]968 G4double s = fRange*std::pow(10.,vstrag->Value(e));
[1055]969 G4double x = fRange + G4RandGauss::shoot(0.0,s);
970 if(x > 0.0) fRange = x;
971 return fRange;
[819]972}
973
974//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
975
[1055]976inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio,
977 G4double charge2ratio)
[819]978{
[1055]979 massRatio = massratio;
980 chargeSqRatio = charge2ratio;
981 reduceFactor = 1.0/(chargeSqRatio*massRatio);
[819]982}
983
984//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
985
[1055]986inline void G4VEnergyLossProcess::DefineMaterial(
987 const G4MaterialCutsCouple* couple)
[819]988{
[1055]989 if(couple != currentCouple) {
990 currentCouple = couple;
991 currentMaterial = couple->GetMaterial();
992 currentMaterialIndex = couple->GetIndex();
993 mfpKinEnergy = DBL_MAX;
994 }
[819]995}
996
997//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
998
[1055]999inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e)
[819]1000{
[1196]1001 G4double x = ((*theDEDXTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1002 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1003 return x;
[819]1004}
1005
1006//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1007
[1055]1008inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e)
[819]1009{
[1196]1010 G4double x = ((*theDEDXSubTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1011 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1012 return x;
[819]1013}
1014
1015//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1016
[1055]1017inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e)
[819]1018{
[1196]1019 //G4double x = 0.0;
[1055]1020 // if(theIonisationTable) {
[1196]1021 G4double x = ((*theIonisationTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1022 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1023 //}
1024 return x;
[819]1025}
1026
1027//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1028
[1055]1029inline
1030G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e)
[819]1031{
[1196]1032 // G4double x = 0.0;
[1055]1033 //if(theIonisationSubTable) {
[1196]1034 G4double x = ((*theIonisationSubTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1035 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1036 //}
1037 return x;
[819]1038}
1039
1040//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1041
[1055]1042inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e)
[819]1043{
[1196]1044 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->Value(e);
[1055]1045 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1046 return x;
[819]1047}
1048
1049//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1050
[1055]1051inline G4double G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy(
1052 G4double e)
[819]1053{
[1055]1054 G4double x;
[819]1055
[1055]1056 if (e < maxKinEnergyCSDA) {
[1196]1057 x = ((*theCSDARangeTable)[currentMaterialIndex])->Value(e);
[1055]1058 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1059 } else {
1060 x = theRangeAtMaxEnergy[currentMaterialIndex] +
1061 (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[currentMaterialIndex];
1062 }
1063 return x;
[819]1064}
1065
1066//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1067
[1055]1068inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r)
[819]1069{
[1055]1070 G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex];
[1196]1071 G4double rmin = v->Energy(0);
[1055]1072 G4double e = 0.0;
[1196]1073 if(r >= rmin) { e = v->Value(r); }
1074 else if(r > 0.0) {
[1055]1075 G4double x = r/rmin;
1076 e = minKinEnergy*x*x;
1077 }
1078 return e;
[819]1079}
1080
1081//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1082
[1055]1083inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e)
[819]1084{
[1196]1085 return chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->Value(e));
[819]1086}
1087
1088//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1089
[1055]1090inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e)
[819]1091{
[1055]1092 mfpKinEnergy = theEnergyOfCrossSectionMax[currentMaterialIndex];
1093 if (e <= mfpKinEnergy) {
1094 preStepLambda = GetLambdaForScaledEnergy(e);
[819]1095
[1055]1096 } else {
1097 G4double e1 = e*lambdaFactor;
1098 if(e1 > mfpKinEnergy) {
1099 preStepLambda = GetLambdaForScaledEnergy(e);
1100 G4double preStepLambda1 = GetLambdaForScaledEnergy(e1);
1101 if(preStepLambda1 > preStepLambda) {
1102 mfpKinEnergy = e1;
1103 preStepLambda = preStepLambda1;
1104 }
1105 } else {
1106 preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex];
1107 }
1108 }
[819]1109}
1110
1111//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1112
1113#endif
Note: See TracBrowser for help on using the repository browser.