source: trunk/source/processes/electromagnetic/utils/include/G4VEnergyLossProcess.hh @ 1252

Last change on this file since 1252 was 1196, checked in by garnier, 15 years ago

update CVS release candidate geant4.9.3.01

File size: 36.1 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
[1196]26// $Id: G4VEnergyLossProcess.hh,v 1.89 2009/07/03 14:39:17 vnivanch Exp $
[819]27// GEANT4 tag $Name:
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class header file
32//
33//
34// File name:     G4VEnergyLossProcess
35//
36// Author:        Vladimir Ivanchenko on base of Laszlo Urban code
37//
38// Creation date: 03.01.2002
39//
40// Modifications:
41//
42// 26-12-02 Secondary production moved to derived classes (V.Ivanchenko)
43// 20-01-03 Migrade to cut per region (V.Ivanchenko)
44// 24-01-03 Make models region aware (V.Ivanchenko)
45// 05-02-03 Fix compilation warnings (V.Ivanchenko)
46// 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko)
47// 17-02-03 Fix problem of store/restore tables (V.Ivanchenko)
48// 26-02-03 Region dependent step limit (V.Ivanchenko)
49// 26-03-03 Add GetDEDXDispersion (V.Ivanchenko)
50// 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko)
51// 13-05-03 Add calculation of precise range (V.Ivanchenko)
52// 21-07-03 Add UpdateEmModel method (V.Ivanchenko)
53// 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko)
54// 14-01-04 Activate precise range calculation (V.Ivanchenko)
55// 10-03-04 Fix problem of step limit calculation (V.Ivanchenko)
56// 30-06-04 make destructor virtual (V.Ivanchenko)
57// 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko)
58// 03-08-04 Add DEDX table to all processes for control on integral range(VI)
59// 06-08-04 Clear up names of member functions (V.Ivanchenko)
60// 27-08-04 Add NeedBuildTables method (V.Ivanchneko)
61// 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko)
62// 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko)
63// 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
64// 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko)
65// 10-01-05 Remove SetStepLimits (V.Ivanchenko)
66// 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko)
67// 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko)
68// 20-01-06 Introduce G4EmTableType and reducing number of methods (VI)
69// 26-01-06 Add public method GetCSDARange (V.Ivanchenko)
70// 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko)
71// 23-03-06 Use isIonisation flag (V.Ivanchenko)
72// 13-05-06 Add method to access model by index (V.Ivanchenko)
73// 14-01-07 add SetEmModel(index) and SetFluctModel() (mma)
74// 15-01-07 Add separate ionisation tables and reorganise get/set methods for
75//          dedx tables (V.Ivanchenko)
76// 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko)
77// 27-07-07 use stl vector for emModels instead of C-array (V.Ivanchenko)
78// 25-09-07 More accurate handling zero xsect in
79//          PostStepGetPhysicalInteractionLength (V.Ivanchenko)
80// 27-10-07 Virtual functions moved to source (V.Ivanchenko)
[961]81// 15-07-08 Reorder class members for further multi-thread development (VI)
[819]82//
83// Class Description:
84//
85// It is the unified energy loss process it calculates the continuous
86// energy loss for charged particles using a set of Energy Loss
87// models valid for different energy regions. There are a possibility
88// to create and access to dE/dx and range tables, or to calculate
89// that information on fly.
90
91// -------------------------------------------------------------------
92//
93
94#ifndef G4VEnergyLossProcess_h
95#define G4VEnergyLossProcess_h 1
96
97#include "G4VContinuousDiscreteProcess.hh"
98#include "globals.hh"
99#include "G4Material.hh"
100#include "G4MaterialCutsCouple.hh"
101#include "G4Track.hh"
102#include "G4EmModelManager.hh"
103#include "G4UnitsTable.hh"
104#include "G4ParticleChangeForLoss.hh"
105#include "G4EmTableType.hh"
106#include "G4PhysicsTable.hh"
107#include "G4PhysicsVector.hh"
108
109class G4Step;
110class G4ParticleDefinition;
111class G4VEmModel;
112class G4VEmFluctuationModel;
113class G4DataVector;
114class G4Region;
115class G4SafetyHelper;
116
117//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
118
119class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess
120{
121public:
122
123  G4VEnergyLossProcess(const G4String& name = "EnergyLoss",
124                       G4ProcessType type = fElectromagnetic);
125
126  virtual ~G4VEnergyLossProcess();
127
[1055]128private:
129  // clean vectors and arrays
130  void Clean();
131
[819]132  //------------------------------------------------------------------------
133  // Virtual methods to be implemented in concrete processes
134  //------------------------------------------------------------------------
135
[1055]136public:
[819]137  virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0;
138 
139  virtual void PrintInfo() = 0;
140
141protected:
142
143  virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*,
144                                           const G4ParticleDefinition*) = 0;
145
146  //------------------------------------------------------------------------
147  // Methods with standard implementation; may be overwritten if needed
148  //------------------------------------------------------------------------
149
150  virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*,
151                                    const G4Material*, G4double cut);
152
153  //------------------------------------------------------------------------
[1055]154  // Virtual methods implementation common to all EM ContinuousDiscrete
155  // processes. Further inheritance is not assumed
[819]156  //------------------------------------------------------------------------
[961]157
[819]158public:
159
[1055]160  // prepare all tables
[819]161  void PreparePhysicsTable(const G4ParticleDefinition&);
162
[1055]163  // build all tables
[819]164  void BuildPhysicsTable(const G4ParticleDefinition&);
165
[1055]166  // build a table
167  G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted);
168
169  // build a table
170  G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted);
171
172  // summary printout after initialisation
173  void PrintInfoDefinition();
174
175  // Add subcutoff option for the region
176  void ActivateSubCutoff(G4bool val, const G4Region* region = 0);
177
178  // Activate deexcitation code for region
179  void ActivateDeexcitation(G4bool, const G4Region* region = 0);
180
181  // Step limit from AlongStep
[961]182  G4double AlongStepGetPhysicalInteractionLength(const G4Track&,
183                                                 G4double  previousStepSize,
184                                                 G4double  currentMinimumStep,
185                                                 G4double& currentSafety,
186                                                 G4GPILSelection* selection);
187
[1055]188  // Step limit from cross section
[961]189  G4double PostStepGetPhysicalInteractionLength(const G4Track& track,
190                                                G4double   previousStepSize,
191                                                G4ForceCondition* condition);
192
[1055]193  // AlongStep computations
[819]194  G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&);
195
[1055]196  // Sampling of secondaries in vicinity of geometrical boundary
197  void SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&, 
198                               G4VEmModel* model, G4int matIdx,
199                               G4double& extraEdep); 
200
201  // PostStep sampling of secondaries
[819]202  G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&);
203
[1055]204  // Store all PhysicsTable in files.
205  // Return false in case of any fatal failure at I/O 
[819]206  G4bool StorePhysicsTable(const G4ParticleDefinition*,
207                           const G4String& directory,
208                           G4bool ascii = false);
209
[1055]210  // Retrieve all Physics from a files.
211  // Return true if all the Physics Table are built.
212  // Return false if any fatal failure.
[819]213  G4bool RetrievePhysicsTable(const G4ParticleDefinition*,
214                              const G4String& directory,
215                              G4bool ascii);
216
[1055]217private:
218  // store a table
219  G4bool StoreTable(const G4ParticleDefinition* p, 
220                    G4PhysicsTable*, G4bool ascii,
221                    const G4String& directory, 
222                    const G4String& tname);
[819]223
[1055]224  // retrieve a table
225  G4bool RetrieveTable(const G4ParticleDefinition* p, 
226                       G4PhysicsTable*, G4bool ascii,
227                       const G4String& directory, 
228                       const G4String& tname, 
229                       G4bool mandatory);
[819]230
231  //------------------------------------------------------------------------
[1055]232  // Public interface to cross section, mfp and sampling of fluctuations
233  // These methods are not used in run time
[819]234  //------------------------------------------------------------------------
235
236public:
[1055]237  // access to dispersion of restricted energy loss
[819]238  G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple,
239                             const G4DynamicParticle* dp,
240                             G4double length);
241
[1055]242  // Access to cross section table
243  G4double CrossSectionPerVolume(G4double kineticEnergy,
244                                 const G4MaterialCutsCouple* couple);
[819]245
[1055]246  // access to cross section
247  G4double MeanFreePath(const G4Track& track);
[819]248
[1055]249  // access to step limit
250  G4double ContinuousStepLimit(const G4Track& track,
251                               G4double previousStepSize,
252                               G4double currentMinimumStep,
253                               G4double& currentSafety);
[819]254
[1055]255protected:
[819]256
[1055]257  // implementation of the pure virtual method
258  G4double GetMeanFreePath(const G4Track& track,
259                           G4double previousStepSize,
260                           G4ForceCondition* condition);
[819]261
[1055]262  // implementation of the pure virtual method
263  G4double GetContinuousStepLimit(const G4Track& track,
264                                  G4double previousStepSize,
265                                  G4double currentMinimumStep,
266                                  G4double& currentSafety);
[819]267
[1055]268  //------------------------------------------------------------------------
269  // Run time method which may be also used by derived processes
270  //------------------------------------------------------------------------
[819]271
[1055]272  // creeation of an empty vector for cross section
273  G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*, 
274                                       G4double cut);
[819]275
[1055]276  inline size_t CurrentMaterialCutsCoupleIndex() const;
[819]277
[1055]278  inline G4double GetCurrentRange() const;
[819]279
280  //------------------------------------------------------------------------
[1055]281  // Specific methods to set, access, modify models
[819]282  //------------------------------------------------------------------------
283
[1055]284  // Select model in run time
285  inline void SelectModel(G4double kinEnergy);
[819]286
[1055]287public:
288  // Select model by energy and region index
289  inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, 
290                                            size_t& idx) const;
[819]291
[1055]292  // Add EM model coupled with fluctuation model for region, smaller value
293  // of order defines which pair of models will be selected for a given
294  // energy interval 
295  void AddEmModel(G4int, G4VEmModel*, 
296                  G4VEmFluctuationModel* fluc = 0,
297                  const G4Region* region = 0);
[819]298
[1055]299  // Define new energy range for the model identified by the name
300  void UpdateEmModel(const G4String&, G4double, G4double);
301
[819]302  // Assign a model to a process
[1055]303  void SetEmModel(G4VEmModel*, G4int index=1);
[819]304 
305  // return the assigned model
[1055]306  G4VEmModel* EmModel(G4int index=1);
[819]307 
[1055]308  // Access to models
309  G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false);
310
311  G4int NumberOfModels();
312
[819]313  // Assign a fluctuation model to a process
[1055]314  void SetFluctModel(G4VEmFluctuationModel*);
[819]315 
316  // return the assigned fluctuation model
317  inline G4VEmFluctuationModel* FluctModel();
318   
[1055]319  //------------------------------------------------------------------------
320  // Define and access particle type
321  //------------------------------------------------------------------------
[819]322
[1055]323protected:
324  inline void SetParticle(const G4ParticleDefinition* p);
325  inline void SetSecondaryParticle(const G4ParticleDefinition* p);
[819]326
[1055]327public:
328  inline void SetBaseParticle(const G4ParticleDefinition* p);
329  inline const G4ParticleDefinition* Particle() const;
330  inline const G4ParticleDefinition* BaseParticle() const;
331  inline const G4ParticleDefinition* SecondaryParticle() const;
[819]332
333  //------------------------------------------------------------------------
[1055]334  // Get/set parameters to configure the process at initialisation time
[819]335  //------------------------------------------------------------------------
336
[1055]337  // Add subcutoff process (bremsstrahlung) to sample secondary
338  // particle production in vicinity of the geometry boundary
339  void AddCollaborativeProcess(G4VEnergyLossProcess*);
340
[819]341  inline void SetLossFluctuations(G4bool val);
342  inline void SetRandomStep(G4bool val);
[1055]343
[819]344  inline void SetIntegral(G4bool val);
345  inline G4bool IsIntegral() const;
346
347  // Set/Get flag "isIonisation"
348  inline void SetIonisation(G4bool val);
349  inline G4bool IsIonisationProcess() const;
350
351  // Redefine parameteters for stepping control
352  //
353  inline void SetLinearLossLimit(G4double val);
354  inline void SetMinSubRange(G4double val);
[1055]355  inline void SetLambdaFactor(G4double val);
[1007]356  inline void SetStepFunction(G4double v1, G4double v2);
[1196]357  inline void SetLowestEnergyLimit(G4double);
[819]358
359  inline G4int NumberOfSubCutoffRegions() const;
[1055]360  inline G4int NumberOfDERegions() const;
[819]361
362  //------------------------------------------------------------------------
[1055]363  // Specific methods to path Physics Tables to the process
[819]364  //------------------------------------------------------------------------
365
[1055]366  void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType);
367  void SetCSDARangeTable(G4PhysicsTable* pRange);
368  void SetRangeTableForLoss(G4PhysicsTable* p);
369  void SetSecondaryRangeTable(G4PhysicsTable* p);
370  void SetInverseRangeTable(G4PhysicsTable* p);
[819]371
[1055]372  void SetLambdaTable(G4PhysicsTable* p);
373  void SetSubLambdaTable(G4PhysicsTable* p);
[819]374
[1055]375  // Binning for dEdx, range, inverse range and labda tables
376  inline void SetDEDXBinning(G4int nbins);
377  inline void SetLambdaBinning(G4int nbins);
[819]378
[1055]379  // Binning for dEdx, range, and inverse range tables
380  inline void SetDEDXBinningForCSDARange(G4int nbins);
[819]381
[1055]382  // Min kinetic energy for tables
383  inline void SetMinKinEnergy(G4double e);
384  inline G4double MinKinEnergy() const;
[819]385
[1055]386  // Max kinetic energy for tables
387  inline void SetMaxKinEnergy(G4double e);
388  inline G4double MaxKinEnergy() const;
[819]389
[1055]390  // Max kinetic energy for tables
391  inline void SetMaxKinEnergyForCSDARange(G4double e);
[819]392
[1055]393  // Return values for given G4MaterialCutsCouple
394  inline G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*);
395  inline G4double GetDEDXForSubsec(G4double& kineticEnergy, 
396                                   const G4MaterialCutsCouple*);
397  inline G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*);
398  inline G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*);
399  inline G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*);
400  inline G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*);
401  inline G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*);
[819]402
[1055]403  inline G4bool TablesAreBuilt() const;
[819]404
[1055]405  // Access to specific tables
406  inline G4PhysicsTable* DEDXTable() const;
407  inline G4PhysicsTable* DEDXTableForSubsec() const;
408  inline G4PhysicsTable* DEDXunRestrictedTable() const;
409  inline G4PhysicsTable* IonisationTable() const;
410  inline G4PhysicsTable* IonisationTableForSubsec() const;
411  inline G4PhysicsTable* CSDARangeTable() const;
412  inline G4PhysicsTable* RangeTableForLoss() const;
413  inline G4PhysicsTable* InverseRangeTable() const;
414  inline G4PhysicsTable* LambdaTable();
415  inline G4PhysicsTable* SubLambdaTable();
[819]416
[961]417  //------------------------------------------------------------------------
[1055]418  // Run time method for simulation of ionisation
[961]419  //------------------------------------------------------------------------
[819]420
[1055]421  // sample range at the end of a step
422  inline G4double SampleRange();
[819]423
[1055]424  // Set scaling parameters for ions is needed to G4EmCalculator
425  inline void SetDynamicMassCharge(G4double massratio, G4double charge2ratio);
[819]426
[1055]427private:
[819]428
[961]429  // define material and indexes
430  inline void DefineMaterial(const G4MaterialCutsCouple* couple);
[819]431
[1055]432  //------------------------------------------------------------------------
433  // Compute values using scaling relation, mass and charge of based particle
434  //------------------------------------------------------------------------
435
[819]436  inline G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy);
437  inline G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy);
438  inline G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy);
439  inline G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy);
440  inline G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy);
441  inline G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy);
[1055]442  inline G4double ScaledKinEnergyForLoss(G4double range);
[1007]443  inline G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy);
[819]444  inline void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy);
445
446  // hide  assignment operator
447  G4VEnergyLossProcess(G4VEnergyLossProcess &);
448  G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right);
449
[961]450  // ======== Parameters of the class fixed at construction =========
[819]451
[961]452  G4EmModelManager*           modelManager;
453  G4SafetyHelper*             safetyHelper;
[819]454
[961]455  const G4ParticleDefinition* secondaryParticle;
456  const G4ParticleDefinition* theElectron;
457  const G4ParticleDefinition* thePositron;
458  const G4ParticleDefinition* theGenericIon;
[819]459
[961]460  G4PhysicsVector*            vstrag;
[819]461
[961]462  // ======== Parameters of the class fixed at initialisation =======
463
[819]464  std::vector<G4VEmModel*>              emModels;
465  G4VEmFluctuationModel*                fluctModel;
466  std::vector<const G4Region*>          scoffRegions;
[1055]467  std::vector<const G4Region*>          deRegions;
[819]468  G4int                                 nSCoffRegions;
[1055]469  G4int                                 nDERegions;
470  G4bool*                               idxSCoffRegions;
471  G4bool*                               idxDERegions;
[961]472
[819]473  std::vector<G4VEnergyLossProcess*>    scProcesses;
474  G4int                                 nProcesses;
475
476  // tables and vectors
477  G4PhysicsTable*             theDEDXTable;
478  G4PhysicsTable*             theDEDXSubTable;
479  G4PhysicsTable*             theDEDXunRestrictedTable;
480  G4PhysicsTable*             theIonisationTable;
481  G4PhysicsTable*             theIonisationSubTable;
482  G4PhysicsTable*             theRangeTableForLoss;
483  G4PhysicsTable*             theCSDARangeTable;
484  G4PhysicsTable*             theSecondaryRangeTable;
485  G4PhysicsTable*             theInverseRangeTable;
486  G4PhysicsTable*             theLambdaTable;
487  G4PhysicsTable*             theSubLambdaTable;
488  G4double*                   theDEDXAtMaxEnergy;
489  G4double*                   theRangeAtMaxEnergy;
490  G4double*                   theEnergyOfCrossSectionMax;
491  G4double*                   theCrossSectionMax;
492
493  const G4DataVector*         theCuts;
494  const G4DataVector*         theSubCuts;
495
496  const G4ParticleDefinition* baseParticle;
497
498  G4int    nBins;
499  G4int    nBinsCSDA;
500
501  G4double lowestKinEnergy;
502  G4double minKinEnergy;
503  G4double maxKinEnergy;
504  G4double maxKinEnergyCSDA;
505
506  G4double linLossLimit;
507  G4double minSubRange;
508  G4double dRoverRange;
509  G4double finalRange;
510  G4double lambdaFactor;
511
512  G4bool   lossFluctuationFlag;
513  G4bool   rndmStepFlag;
514  G4bool   tablesAreBuilt;
515  G4bool   integral;
[961]516  G4bool   isIon;
[819]517  G4bool   isIonisation;
518  G4bool   useSubCutoff;
[1055]519  G4bool   useDeexcitation;
[819]520
[961]521protected:
[819]522
[961]523  G4ParticleChangeForLoss          fParticleChange;
[819]524
[961]525  // ======== Cashed values - may be state dependent ================
[819]526
[961]527private:
[819]528
[961]529  std::vector<G4DynamicParticle*>  secParticles;
530  std::vector<G4Track*>            scTracks;
[819]531
[961]532  const G4ParticleDefinition* particle;
[819]533
[961]534  G4VEmModel*                 currentModel;
535  const G4Material*           currentMaterial;
536  const G4MaterialCutsCouple* currentCouple;
537  size_t                      currentMaterialIndex;
538
539  G4int    nWarnings;
540
541  G4double massRatio;
542  G4double reduceFactor;
543  G4double chargeSqRatio;
544
545  G4double preStepLambda;
546  G4double fRange;
547  G4double preStepKinEnergy;
548  G4double preStepScaledEnergy;
549  G4double mfpKinEnergy;
550
551  G4GPILSelection  aGPILSelection;
552
553};
554
[819]555//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[961]556//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[819]557
[1055]558inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const 
[819]559{
[1055]560  return currentMaterialIndex;
[819]561}
562
563//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1055]564 
565inline G4double G4VEnergyLossProcess::GetCurrentRange() const
[819]566{
[1055]567  return fRange;
[819]568}
569
570//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1007]571
[1055]572inline void G4VEnergyLossProcess::SelectModel(G4double kinEnergy)
[819]573{
[1055]574  currentModel = modelManager->SelectModel(kinEnergy, currentMaterialIndex);
575  currentModel->SetCurrentCouple(currentCouple);
[819]576}
577
578//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
579
[1055]580inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial(
581                   G4double kinEnergy, size_t& idx) const
[819]582{
[1055]583  return modelManager->SelectModel(kinEnergy, idx);
[819]584}
585
586//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
587
[1055]588inline void G4VEnergyLossProcess::SetFluctModel(G4VEmFluctuationModel* p)
[819]589{
[1055]590  fluctModel = p;
[819]591}
592
593//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
594
[1055]595inline G4VEmFluctuationModel* G4VEnergyLossProcess::FluctModel()
[819]596{
[1055]597  return fluctModel;
[819]598}
599
600//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
601
[1055]602inline void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p)
[819]603{
[1055]604  particle = p;
[819]605}
606
607//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
608
[1055]609inline void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p)
[819]610{
[1055]611  secondaryParticle = p;
[819]612}
613
614//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
615
[1055]616inline void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p)
[819]617{
[1055]618  baseParticle = p;
[819]619}
620
621//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
622
[1055]623inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const
[819]624{
[1055]625  return particle;
[819]626}
627
628//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
629
[1055]630inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const
[819]631{
[1055]632  return baseParticle;
[819]633}
634
635//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
636
[1055]637inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const
[819]638{
[1055]639  return secondaryParticle;
[819]640}
641
642//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
643
[1055]644inline void G4VEnergyLossProcess::SetLossFluctuations(G4bool val)
[819]645{
[1055]646  lossFluctuationFlag = val;
[819]647}
648
649//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
650
[1055]651inline void G4VEnergyLossProcess::SetRandomStep(G4bool val)
[819]652{
[1055]653  rndmStepFlag = val;
[819]654}
655
656//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
657
[1055]658inline void G4VEnergyLossProcess::SetIntegral(G4bool val)
[819]659{
[1055]660  integral = val;
[819]661}
662
663//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1055]664 
665inline G4bool G4VEnergyLossProcess::IsIntegral() const 
[819]666{
[1055]667  return integral;
[819]668}
669
670//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
671
[1055]672inline void G4VEnergyLossProcess::SetIonisation(G4bool val)
[819]673{
[1055]674  isIonisation = val;
675  if(val) aGPILSelection = CandidateForSelection;
676  else    aGPILSelection = NotCandidateForSelection;
[819]677}
678
679//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
680
[1055]681inline G4bool G4VEnergyLossProcess::IsIonisationProcess() const
[819]682{
[1055]683  return isIonisation;
[819]684}
685
686//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
687
[1055]688inline void G4VEnergyLossProcess::SetLinearLossLimit(G4double val)
[819]689{
[1055]690  linLossLimit = val;
[819]691}
692
693//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
694
[1055]695inline void G4VEnergyLossProcess::SetMinSubRange(G4double val)
[819]696{
[1055]697  minSubRange = val;
[819]698}
699
700//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
701
[1055]702inline void G4VEnergyLossProcess::SetLambdaFactor(G4double val)
[819]703{
[1055]704  if(val > 0.0 && val <= 1.0) lambdaFactor = val;
[819]705}
706
707//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
708
[1055]709void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2)
[819]710{
[1055]711  dRoverRange = v1;
712  finalRange = v2;
713  if (dRoverRange > 0.999) dRoverRange = 1.0;
714  currentCouple = 0;
715  mfpKinEnergy  = DBL_MAX;
[819]716}
717
718//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1007]719
[1196]720inline void G4VEnergyLossProcess::SetLowestEnergyLimit(G4double val)
721{
722  lowestKinEnergy = val;
723}
724
725//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
726
[1055]727inline G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const
[819]728{
[1055]729  return nSCoffRegions;
[819]730}
731
732//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
733
[1055]734inline G4int G4VEnergyLossProcess::NumberOfDERegions() const
[819]735{
[1055]736  return nDERegions;
[819]737}
738
739//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
740
[1055]741inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins)
[819]742{
[1055]743  nBins = nbins;
[819]744}
745
746//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
747
[1055]748inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins)
[961]749{
[1055]750  nBins = nbins;
[961]751}
[819]752
753//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
754
[1055]755inline void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins)
[819]756{
[1055]757  nBinsCSDA = nbins;
[819]758}
759
760//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
761
[1055]762inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e)
[819]763{
[1055]764  minKinEnergy = e;
[819]765}
766
767//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
768
[1055]769inline G4double G4VEnergyLossProcess::MinKinEnergy() const
[819]770{
[1055]771  return minKinEnergy;
[819]772}
773
774//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
775
[1055]776inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e)
[819]777{
[1055]778  maxKinEnergy = e;
779  if(e < maxKinEnergyCSDA) maxKinEnergyCSDA = e;
[819]780}
781
782//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
783
[1055]784inline G4double G4VEnergyLossProcess::MaxKinEnergy() const
[819]785{
[1055]786  return maxKinEnergy;
[819]787}
788
789//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
790
[1055]791inline void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e)
[819]792{
[1055]793  maxKinEnergyCSDA = e;
[819]794}
795
796//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
797
[1055]798inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy,
799                                        const G4MaterialCutsCouple* couple)
[819]800{
[1055]801  DefineMaterial(couple);
802  return GetDEDXForScaledEnergy(kineticEnergy*massRatio);
[819]803}
804
805//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
806
[1055]807inline G4double G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy,
808                                        const G4MaterialCutsCouple* couple)
[819]809{
[1055]810  DefineMaterial(couple);
811  return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio);
[819]812}
813
814//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
815
[1055]816inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy,
817                                         const G4MaterialCutsCouple* couple)
[819]818{
[1055]819  G4double x = fRange;
820  if(kineticEnergy != preStepKinEnergy || couple != currentCouple) { 
821    DefineMaterial(couple);
822    if(theCSDARangeTable)
823      x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio)
824        * reduceFactor;
825    else if(theRangeTableForLoss)
826      x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor;
827  }
828  return x;
[819]829}
830
831//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
832
[1055]833inline G4double G4VEnergyLossProcess::GetCSDARange(
834       G4double& kineticEnergy, const G4MaterialCutsCouple* couple)
[819]835{
[1055]836  DefineMaterial(couple);
837  G4double x = DBL_MAX;
838  if(theCSDARangeTable)
839    x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio)
840      * reduceFactor;
841  return x;
[819]842}
843
844//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[961]845
[1055]846inline G4double G4VEnergyLossProcess::GetRangeForLoss(
847                G4double& kineticEnergy,
848                const G4MaterialCutsCouple* couple)
[819]849{
[1055]850  DefineMaterial(couple);
851  G4double x = DBL_MAX;
852  if(theRangeTableForLoss) 
853    x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor;
854  //  G4cout << "Range from " << GetProcessName()
855  //         << "  e= " << kineticEnergy << " r= " << x << G4endl;
856  return x;
[819]857}
858
859//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1005]860
[1055]861inline G4double G4VEnergyLossProcess::GetKineticEnergy(
862                G4double& range,
863                const G4MaterialCutsCouple* couple)
[991]864{
[1055]865  DefineMaterial(couple);
866  G4double r = range/reduceFactor;
867  G4double e = ScaledKinEnergyForLoss(r)/massRatio;
868  return e;
[991]869}
[819]870
[991]871//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
872
[1055]873inline G4double G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy,
874                                          const G4MaterialCutsCouple* couple)
[819]875{
[1055]876  DefineMaterial(couple);
877  G4double x = 0.0;
878  if(theLambdaTable) x = GetLambdaForScaledEnergy(kineticEnergy*massRatio);
879  return x;
[819]880}
881
882//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
883
[1055]884inline G4bool G4VEnergyLossProcess::TablesAreBuilt() const
[819]885{
[1055]886  return  tablesAreBuilt;
[819]887}
888
889//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
[1005]890
[1055]891inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const
[991]892{
[1055]893  return theDEDXTable;
[991]894}
[819]895
[991]896//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
897
[1055]898inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const
[819]899{
[1055]900  return theDEDXSubTable;
[819]901}
902
903//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
904
[1055]905inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const
[819]906{
[1055]907  return theDEDXunRestrictedTable;
[819]908}
909
910//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
911
[1055]912inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const
[819]913{
[1055]914  G4PhysicsTable* t = theDEDXTable;
915  if(theIonisationTable) t = theIonisationTable; 
916  return t;
[819]917}
918
919//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
920
[1055]921inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const
[819]922{
[1055]923  G4PhysicsTable* t = theDEDXSubTable;
924  if(theIonisationSubTable) t = theIonisationSubTable; 
925  return t;
[819]926}
927
928//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
929
[1055]930inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const
[819]931{
[1055]932  return theCSDARangeTable;
[819]933}
934
935//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
936
[1055]937inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const
[819]938{
[1055]939  return theRangeTableForLoss;
[819]940}
941
942//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
943
[1055]944inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const
[819]945{
[1055]946  return theInverseRangeTable;
[819]947}
948
949//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
950
[1055]951inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable()
[819]952{
[1055]953  return theLambdaTable;
[819]954}
955
956//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
957
[1055]958inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable()
[819]959{
[1055]960  return theSubLambdaTable;
[819]961}
962
963//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
964
[1055]965inline G4double G4VEnergyLossProcess::SampleRange()
[819]966{
[1055]967  G4double e = amu_c2*preStepKinEnergy/particle->GetPDGMass();
[1196]968  G4double s = fRange*std::pow(10.,vstrag->Value(e));
[1055]969  G4double x = fRange + G4RandGauss::shoot(0.0,s);
970  if(x > 0.0) fRange = x;
971  return fRange;
[819]972}
973
974//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
975
[1055]976inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio,
977                                                       G4double charge2ratio)
[819]978{
[1055]979  massRatio     = massratio;
980  chargeSqRatio = charge2ratio;
981  reduceFactor  = 1.0/(chargeSqRatio*massRatio);
[819]982}
983
984//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
985
[1055]986inline void G4VEnergyLossProcess::DefineMaterial(
987            const G4MaterialCutsCouple* couple)
[819]988{
[1055]989  if(couple != currentCouple) {
990    currentCouple   = couple;
991    currentMaterial = couple->GetMaterial();
992    currentMaterialIndex = couple->GetIndex();
993    mfpKinEnergy = DBL_MAX;
994  }
[819]995}
996
997//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
998
[1055]999inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e)
[819]1000{
[1196]1001  G4double x = ((*theDEDXTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1002  if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1003  return x;
[819]1004}
1005
1006//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1007
[1055]1008inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e)
[819]1009{
[1196]1010  G4double x = ((*theDEDXSubTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1011  if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1012  return x;
[819]1013}
1014
1015//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1016
[1055]1017inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e)
[819]1018{
[1196]1019  //G4double x = 0.0;
[1055]1020  //  if(theIonisationTable) {
[1196]1021  G4double x = ((*theIonisationTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1022  if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1023  //}
1024  return x;
[819]1025}
1026
1027//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1028
[1055]1029inline 
1030G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e)
[819]1031{
[1196]1032  //  G4double x = 0.0;
[1055]1033  //if(theIonisationSubTable) {
[1196]1034  G4double x = ((*theIonisationSubTable)[currentMaterialIndex]->Value(e))*chargeSqRatio;
[1055]1035  if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1036  //}
1037  return x;
[819]1038}
1039
1040//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1041
[1055]1042inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e)
[819]1043{
[1196]1044  G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->Value(e);
[1055]1045  if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1046  return x;
[819]1047}
1048
1049//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1050
[1055]1051inline G4double G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy(
1052                G4double e)
[819]1053{
[1055]1054  G4double x;
[819]1055
[1055]1056  if (e < maxKinEnergyCSDA) {
[1196]1057    x = ((*theCSDARangeTable)[currentMaterialIndex])->Value(e);
[1055]1058    if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy);
1059  } else {
1060    x = theRangeAtMaxEnergy[currentMaterialIndex] +
1061         (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[currentMaterialIndex];
1062  }
1063  return x;
[819]1064}
1065
1066//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1067
[1055]1068inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r)
[819]1069{
[1055]1070  G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex];
[1196]1071  G4double rmin = v->Energy(0);
[1055]1072  G4double e = 0.0; 
[1196]1073  if(r >= rmin) { e = v->Value(r); }
1074  else if(r > 0.0) {
[1055]1075    G4double x = r/rmin;
1076    e = minKinEnergy*x*x;
1077  }
1078  return e;
[819]1079}
1080
1081//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1082
[1055]1083inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e)
[819]1084{
[1196]1085  return chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->Value(e));
[819]1086}
1087
1088//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1089
[1055]1090inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e)
[819]1091{
[1055]1092  mfpKinEnergy  = theEnergyOfCrossSectionMax[currentMaterialIndex];
1093  if (e <= mfpKinEnergy) {
1094    preStepLambda = GetLambdaForScaledEnergy(e);
[819]1095
[1055]1096  } else {
1097    G4double e1 = e*lambdaFactor;
1098    if(e1 > mfpKinEnergy) {
1099      preStepLambda  = GetLambdaForScaledEnergy(e);
1100      G4double preStepLambda1 = GetLambdaForScaledEnergy(e1);
1101      if(preStepLambda1 > preStepLambda) {
1102        mfpKinEnergy = e1;
1103        preStepLambda = preStepLambda1;
1104      }
1105    } else {
1106      preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex];
1107    }
1108  }
[819]1109}
1110
1111//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1112
1113#endif
Note: See TracBrowser for help on using the repository browser.