source: trunk/source/processes/electromagnetic/utils/src/G4EmSaturation.cc@ 991

Last change on this file since 991 was 968, checked in by garnier, 17 years ago

fichier ajoutes

  • Property svn:executable set to *
File size: 8.7 KB
RevLine 
[968]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4EmSaturation.cc,v 1.9 2008/11/12 15:37:33 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-02-ref-02 $
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class file
32//
33//
34// File name: G4EmSaturation
35//
36// Author: Vladimir Ivanchenko
37//
38// Creation date: 18.02.2008
39//
40// Modifications:
41//
42// -------------------------------------------------------------
43
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
46
47#include "G4EmSaturation.hh"
48#include "G4Gamma.hh"
49#include "G4Electron.hh"
50#include "G4Neutron.hh"
51#include "G4Proton.hh"
52#include "G4LossTableManager.hh"
53#include "G4NistManager.hh"
54#include "G4Material.hh"
55#include "G4MaterialCutsCouple.hh"
56
57//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
58
59G4EmSaturation::G4EmSaturation()
60{
61 verbose = 1;
62 manager = 0;
63 curMaterial = 0;
64 curBirks = 0.0;
65 curRatio = 1.0;
66 curChargeSq = 1.0;
67 nMaterials = 0;
68 Initialise();
69}
70
71//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
72
73G4EmSaturation::~G4EmSaturation()
74{}
75
76//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
77
78G4double G4EmSaturation::VisibleEnergyDeposition(
79 const G4ParticleDefinition* p,
80 const G4MaterialCutsCouple* couple,
81 G4double length,
82 G4double edep,
83 G4double niel)
84{
85 if(edep <= 0.0) return 0.0;
86
87 G4double evis = edep;
88 G4double bfactor = FindBirksCoefficient(couple->GetMaterial());
89
90 if(bfactor > 0.0) {
91
92 // atomic relaxations
93 if(p == gamma) {
94 evis /= (1.0 + bfactor*edep/manager->GetRange(electron,edep,couple));
95
96 // energy loss
97 } else {
98
99 // protections
100 G4double nloss = niel;
101 if(nloss < 0.0) nloss = 0.0;
102 G4double eloss = edep - nloss;
103 if(p == neutron || eloss < 0.0 || length <= 0.0) {
104 nloss = edep;
105 eloss = 0.0;
106 }
107
108 // continues energy loss
109 if(eloss > 0.0) eloss /= (1.0 + bfactor*eloss/length);
110
111 // non-ionizing energy loss
112 if(nloss > 0.0) {
113 G4double escaled = nloss*curRatio;
114 G4double s = manager->GetRange(proton,escaled,couple)/curChargeSq;
115 nloss /= (1.0 + bfactor*nloss/s);
116 }
117
118 evis = eloss + nloss;
119 }
120 }
121
122 return evis;
123}
124
125//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
126
127G4double G4EmSaturation::FindG4BirksCoefficient(const G4Material* mat)
128{
129 G4String name = mat->GetName();
130 // is this material in the vector?
131
132 for(G4int j=0; j<nG4Birks; j++) {
133 if(name == g4MatNames[j]) {
134 if(verbose > 0)
135 G4cout << "### G4EmSaturation::FindG4BirksCoefficient for "
136 << name << " is " << g4MatData[j]*MeV/mm << " mm/MeV "
137 << G4endl;
138 return g4MatData[j];
139 }
140 }
141 return FindBirksCoefficient(mat);
142}
143
144//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
145
146G4double G4EmSaturation::FindBirksCoefficient(const G4Material* mat)
147{
148 if(mat == curMaterial) return curBirks;
149
150 curMaterial = mat;
151 curBirks = 0.0;
152 curRatio = 1.0;
153 curChargeSq = 1.0;
154
155 // seach in the run-time list
156 for(G4int i=0; i<nMaterials; i++) {
157 if(mat == matPointers[i]) {
158 curBirks = mat->GetIonisation()->GetBirksConstant();
159 curRatio = massFactors[i];
160 curChargeSq = effCharges[i];
161 return curBirks;
162 }
163 }
164
165 if(!manager) {
166 manager = G4LossTableManager::Instance();
167 nist = G4NistManager::Instance();
168 gamma = G4Gamma::Gamma();
169 electron= G4Electron::Electron();
170 proton = G4Proton::Proton();
171 neutron = G4Neutron::Neutron();
172 }
173
174 G4String name = mat->GetName();
175 curBirks = mat->GetIonisation()->GetBirksConstant();
176
177 // material has no Birks coeffitient defined
178 // seach in the Geant4 list
179 if(curBirks == 0.0) {
180 for(G4int j=0; j<nG4Birks; j++) {
181 if(name == g4MatNames[j]) {
182 mat->GetIonisation()->SetBirksConstant(g4MatData[j]);
183 curBirks = g4MatData[j];
184 break;
185 }
186 }
187 }
188
189 if(curBirks == 0.0 && verbose > 0) {
190 G4cout << "### G4EmSaturation::FindBirksCoefficient fails "
191 " for material " << name << G4endl;
192 }
193
194 // compute mean mass ratio
195 curRatio = 0.0;
196 curChargeSq = 0.0;
197 G4double norm = 0.0;
198 const G4ElementVector* theElementVector = mat->GetElementVector();
199 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume();
200 size_t nelm = mat->GetNumberOfElements();
201 for (size_t i=0; i<nelm; i++) {
202 const G4Element* elm = (*theElementVector)[i];
203 G4double Z = elm->GetZ();
204 G4double w = Z*Z*theAtomNumDensityVector[i];
205 curRatio += w/nist->GetAtomicMassAmu(G4int(Z));
206 curChargeSq = Z*Z*w;
207 norm += w;
208 }
209 curRatio *= proton_mass_c2/norm;
210 curChargeSq /= norm;
211
212 // store results
213 matPointers.push_back(mat);
214 matNames.push_back(name);
215 massFactors.push_back(curRatio);
216 effCharges.push_back(curChargeSq);
217 nMaterials++;
218 if(curBirks > 0.0 && verbose > 0) {
219 G4cout << "### G4EmSaturation::FindBirksCoefficient Birks coefficient for "
220 << name << " " << curBirks*MeV/mm << " mm/MeV" << G4endl;
221 }
222 return curBirks;
223}
224
225//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
226
227void G4EmSaturation::DumpBirksCoefficients()
228{
229 if(nMaterials > 0) {
230 G4cout << "### Birks coeffitients used in run time" << G4endl;
231 for(G4int i=0; i<nMaterials; i++) {
232 G4double br = matPointers[i]->GetIonisation()->GetBirksConstant();
233 G4cout << " " << matNames[i] << " "
234 << br*MeV/mm << " mm/MeV" << " "
235 << br*matPointers[i]->GetDensity()*MeV*cm2/g
236 << " g/cm^2/MeV"
237 << G4endl;
238 }
239 }
240}
241
242//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
243
244void G4EmSaturation::DumpG4BirksCoefficients()
245{
246 if(nG4Birks > 0) {
247 G4cout << "### Birks coeffitients for Geant4 materials" << G4endl;
248 for(G4int i=0; i<nG4Birks; i++) {
249 G4cout << " " << g4MatNames[i] << " "
250 << g4MatData[i]*MeV/mm << " mm/MeV" << G4endl;
251 }
252 }
253}
254
255//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
256
257void G4EmSaturation::Initialise()
258{
259 // M.Hirschberg et al., IEEE Trans. Nuc. Sci. 39 (1992) 511
260 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1.06 g/cm^3
261 g4MatNames.push_back("G4_POLYSTYRENE");
262 g4MatData.push_back(0.07943*mm/MeV);
263
264 // C.Fabjan (private communication)
265 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3
266 g4MatNames.push_back("G4_BGO");
267 g4MatData.push_back(0.008415*mm/MeV);
268
269 // A.Ribon analysis of publications
270 // Scallettar et al., Phys. Rev. A25 (1982) 2419.
271 // NIM A 523 (2004) 275.
272 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3;
273 // ATLAS Efield = 10 kV/cm provide the strongest effect
274 g4MatNames.push_back("G4_lAr");
275 g4MatData.push_back(0.1576*mm/MeV);
276
277 //G4_BARIUM_FLUORIDE
278 //G4_CESIUM_IODIDE
279 //G4_GEL_PHOTO_EMULSION
280 //G4_PHOTO_EMULSION
281 //G4_PLASTIC_SC_VINYLTOLUENE
282 //G4_SODIUM_IODIDE
283 //G4_STILBENE
284 //G4_lAr
285 //G4_PbWO4
286 //G4_Lucite
287
288 nG4Birks = g4MatData.size();
289}
290
291//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
Note: See TracBrowser for help on using the repository browser.