// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4ionEffectiveCharge.cc,v 1.17.2.1 2008/04/22 15:28:13 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-01-patch-02 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4ionEffectiveCharge // // Author: Vladimir Ivanchenko // // Creation date: 07.05.2002 // // Modifications: // 12.09.2004 Set low energy limit to 1 keV (V.Ivanchenko) // 25.01.2005 Add protection - min Charge 0.1 eplus (V.Ivanchenko) // 28.04.2006 Set upper energy limit to 50 MeV (V.Ivanchenko) // 23.05.2006 Set upper energy limit to Z*10 MeV (V.Ivanchenko) // 15.08.2006 Add protection for not defined material (V.Ivanchenko) // 27-09-2007 Use Fermi energy from material, optimazed formulas (V.Ivanchenko) // // ------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "G4ionEffectiveCharge.hh" #include "G4UnitsTable.hh" #include "G4ParticleDefinition.hh" #include "G4Material.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4ionEffectiveCharge::G4ionEffectiveCharge() { chargeCorrection = 1.0; energyHighLimit = 10.0*MeV; energyLowLimit = 1.0*keV; energyBohr = 25.*keV; massFactor = amu_c2/(proton_mass_c2*keV); minCharge = 0.1; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4ionEffectiveCharge::~G4ionEffectiveCharge() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4ionEffectiveCharge::EffectiveCharge(const G4ParticleDefinition* p, const G4Material* material, G4double kineticEnergy) { G4double mass = p->GetPDGMass(); G4double charge = p->GetPDGCharge(); G4double Zi = charge/eplus; chargeCorrection = 1.0; // The aproximation of ion effective charge from: // J.F.Ziegler, J.P. Biersack, U. Littmark // The Stopping and Range of Ions in Matter, // Vol.1, Pergamon Press, 1985 // Fast ions or hadrons G4double reducedEnergy = kineticEnergy * proton_mass_c2/mass ; if( reducedEnergy > Zi*energyHighLimit || Zi < 1.5 || !material) return charge; static G4double c[6] = {0.2865, 0.1266, -0.001429, 0.02402,-0.01135, 0.001475} ; G4double z = material->GetIonisation()->GetZeffective(); reducedEnergy = std::max(reducedEnergy,energyLowLimit); G4double q; // Helium ion case if( Zi < 2.5 ) { G4double Q = std::max(0.0,std::log(reducedEnergy*massFactor)); G4double x = c[0]; G4double y = 1.0; for (G4int i=1; i<6; i++) { y *= Q; x += y * c[i] ; } G4double ex; if(x < 0.2) ex = x * (1 - 0.5*x); else ex = 1. - std::exp(-x); G4double tq = 7.6 - Q; G4double tq2= tq*tq; G4double tt = ( 0.007 + 0.00005 * z ); if(tq2 < 0.2) tt *= (1.0 - tq2 + 0.5*tq2*tq2); else tt *= std::exp(-tq2); q = (1.0 + tt) * std::sqrt(ex); // Heavy ion case } else { G4double z23 = std::pow(z, 0.666666); G4double zi13 = std::pow(Zi, 0.333333); G4double zi23 = zi13*zi13; G4double e = std::max(reducedEnergy,energyBohr/z23); // v1 is ion velocity in vF unit G4double eF = material->GetIonisation()->GetFermiEnergy(); G4double v1sq = e/eF; G4double vFsq = eF/energyBohr; G4double vF = std::sqrt(vFsq); G4double y ; // Faster than Fermi velocity if ( v1sq > 1.0 ) { y = vF * std::sqrt(v1sq) * ( 1.0 + 0.2/v1sq ) / zi23 ; // Slower than Fermi velocity } else { y = 0.692308 * vF * (1.0 + 0.666666*v1sq + v1sq*v1sq/15.0) / zi23 ; } G4double y3 = std::pow(y, 0.3) ; // G4cout << "y= " << y << " y3= " << y3 << " v1= " << v1 << " vF= " << vF << G4endl; q = 1.0 - std::exp( 0.803*y3 - 1.3167*y3*y3 - 0.38157*y - 0.008983*y*y ) ; // q = 1.0 - std::exp(-0.95*std::sqrt(reducedEnergy/energyBohr)/zi23); G4double qmin = minCharge/Zi; if(q < qmin) q = qmin; G4double tq = 7.6 - std::log(reducedEnergy/keV); G4double tq2= tq*tq; G4double sq = ( 0.18 + 0.0015 * z ) / (Zi*Zi); if(tq2 < 0.2) sq *= (1.0 - tq2 + 0.5*tq2*tq2); else sq *= std::exp(-tq2); sq += 1.0; // G4cout << "sq= " << sq << G4endl; // Screen length according to // J.F.Ziegler and J.M.Manoyan, The stopping of ions in compaunds, // Nucl. Inst. & Meth. in Phys. Res. B35 (1988) 215-228. G4double lambda = 10.0 * vF / (zi13 * (6.0 + q)); if(q < 0.2) lambda *= (1.0 - 0.666666*q - q*q/9.0); else lambda *= std::pow(1.0-q, 0.666666); G4double lambda2 = lambda*lambda; G4double xx = (0.5/q - 0.5)/vFsq; if(lambda2 < 0.2) xx *= lambda2*(1.0 - 0.5*lambda2); else xx *= std::log(1.0 + lambda2); chargeCorrection = sq * (1.0 + xx); } // G4cout << "G4ionEffectiveCharge: charge= " << charge << " q= " << q // << " chargeCor= " << chargeCorrection // << " e(MeV)= " << kineticEnergy/MeV << G4endl; return q*charge; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....