// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4Scintillation.hh,v 1.17 2010/05/27 20:48:35 gum Exp $ // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $ // // //////////////////////////////////////////////////////////////////////// // Scintillation Light Class Definition //////////////////////////////////////////////////////////////////////// // // File: G4Scintillation.hh // Description: Discrete Process - Generation of Scintillation Photons // Version: 1.0 // Created: 1998-11-07 // Author: Peter Gumplinger // Updated: 2005-07-28 add G4ProcessType to constructor // 2002-11-21 change to user G4Poisson for small MeanNumPotons // 2002-11-07 allow for fast and slow scintillation // 2002-11-05 make use of constant material properties // 2002-05-16 changed to inherit from VRestDiscreteProcess // 2002-05-09 changed IsApplicable method // 1999-10-29 add method and class descriptors // // mail: gum@triumf.ca // //////////////////////////////////////////////////////////////////////// #ifndef G4Scintillation_h #define G4Scintillation_h 1 ///////////// // Includes ///////////// #include "globals.hh" #include "templates.hh" #include "Randomize.hh" #include "G4Poisson.hh" #include "G4ThreeVector.hh" #include "G4ParticleMomentum.hh" #include "G4Step.hh" #include "G4VRestDiscreteProcess.hh" #include "G4OpticalPhoton.hh" #include "G4DynamicParticle.hh" #include "G4Material.hh" #include "G4PhysicsTable.hh" #include "G4MaterialPropertiesTable.hh" #include "G4PhysicsOrderedFreeVector.hh" #include "G4EmSaturation.hh" // Class Description: // RestDiscrete Process - Generation of Scintillation Photons. // Class inherits publicly from G4VRestDiscreteProcess. // Class Description - End: ///////////////////// // Class Definition ///////////////////// class G4Scintillation : public G4VRestDiscreteProcess { private: ////////////// // Operators ////////////// // G4Scintillation& operator=(const G4Scintillation &right); public: // Without description //////////////////////////////// // Constructors and Destructor //////////////////////////////// G4Scintillation(const G4String& processName = "Scintillation", G4ProcessType type = fElectromagnetic); // G4Scintillation(const G4Scintillation &right); ~G4Scintillation(); //////////// // Methods //////////// public: // With description // G4Scintillation Process has both PostStepDoIt (for energy // deposition of particles in flight) and AtRestDoIt (for energy // given to the medium by particles at rest) G4bool IsApplicable(const G4ParticleDefinition& aParticleType); // Returns true -> 'is applicable', for any particle type except // for an 'opticalphoton' and for short-lived particles G4double GetMeanFreePath(const G4Track& aTrack, G4double , G4ForceCondition* ); // Returns infinity; i. e. the process does not limit the step, // but sets the 'StronglyForced' condition for the DoIt to be // invoked at every step. G4double GetMeanLifeTime(const G4Track& aTrack, G4ForceCondition* ); // Returns infinity; i. e. the process does not limit the time, // but sets the 'StronglyForced' condition for the DoIt to be // invoked at every step. G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep); G4VParticleChange* AtRestDoIt (const G4Track& aTrack, const G4Step& aStep); // These are the methods implementing the scintillation process. void SetTrackSecondariesFirst(const G4bool state); // If set, the primary particle tracking is interrupted and any // produced scintillation photons are tracked next. When all // have been tracked, the tracking of the primary resumes. void SetFiniteRiseTime(const G4bool state); // If set, the G4Scintillation process expects the user to have // set the constant material property FAST/SLOWSCINTILLATIONRISETIME. G4bool GetTrackSecondariesFirst() const; // Returns the boolean flag for tracking secondaries first. G4bool GetFiniteRiseTime() const; // Returns the boolean flag for a finite scintillation rise time. void SetScintillationYieldFactor(const G4double yieldfactor); // Called to set the scintillation photon yield factor, needed when // the yield is different for different types of particles. This // scales the yield obtained from the G4MaterialPropertiesTable. G4double GetScintillationYieldFactor() const; // Returns the photon yield factor. void SetScintillationExcitationRatio(const G4double excitationratio); // Called to set the scintillation exciation ratio, needed when // the scintillation level excitation is different for different // types of particles. This overwrites the YieldRatio obtained // from the G4MaterialPropertiesTable. G4double GetScintillationExcitationRatio() const; // Returns the scintillation level excitation ratio. G4PhysicsTable* GetFastIntegralTable() const; // Returns the address of the fast scintillation integral table. G4PhysicsTable* GetSlowIntegralTable() const; // Returns the address of the slow scintillation integral table. void AddSaturation(G4EmSaturation* sat) { emSaturation = sat; } // Adds Birks Saturation to the process. G4EmSaturation* GetSaturation() const { return emSaturation; } // Returns the Birks Saturation. void DumpPhysicsTable() const; // Prints the fast and slow scintillation integral tables. protected: void BuildThePhysicsTable(); // It builds either the fast or slow scintillation integral table; // or both. /////////////////////// // Class Data Members /////////////////////// G4PhysicsTable* theSlowIntegralTable; G4PhysicsTable* theFastIntegralTable; G4bool fTrackSecondariesFirst; G4bool fFiniteRiseTime; G4double YieldFactor; G4double ExcitationRatio; private: G4double single_exp(G4double t, G4double tau2); G4double bi_exp(G4double t, G4double tau1, G4double tau2); // emission time distribution when there is a finite rise time G4double sample_time(G4double tau1, G4double tau2); G4EmSaturation* emSaturation; }; //////////////////// // Inline methods //////////////////// inline G4bool G4Scintillation::IsApplicable(const G4ParticleDefinition& aParticleType) { if (aParticleType.GetParticleName() == "opticalphoton") return false; if (aParticleType.IsShortLived()) return false; return true; } inline void G4Scintillation::SetTrackSecondariesFirst(const G4bool state) { fTrackSecondariesFirst = state; } inline void G4Scintillation::SetFiniteRiseTime(const G4bool state) { fFiniteRiseTime = state; } inline G4bool G4Scintillation::GetTrackSecondariesFirst() const { return fTrackSecondariesFirst; } inline G4bool G4Scintillation::GetFiniteRiseTime() const { return fFiniteRiseTime; } inline void G4Scintillation::SetScintillationYieldFactor(const G4double yieldfactor) { YieldFactor = yieldfactor; } inline G4double G4Scintillation::GetScintillationYieldFactor() const { return YieldFactor; } inline void G4Scintillation::SetScintillationExcitationRatio(const G4double excitationratio) { ExcitationRatio = excitationratio; } inline G4double G4Scintillation::GetScintillationExcitationRatio() const { return ExcitationRatio; } inline G4PhysicsTable* G4Scintillation::GetSlowIntegralTable() const { return theSlowIntegralTable; } inline G4PhysicsTable* G4Scintillation::GetFastIntegralTable() const { return theFastIntegralTable; } inline void G4Scintillation::DumpPhysicsTable() const { if (theFastIntegralTable) { G4int PhysicsTableSize = theFastIntegralTable->entries(); G4PhysicsOrderedFreeVector *v; for (G4int i = 0 ; i < PhysicsTableSize ; i++ ) { v = (G4PhysicsOrderedFreeVector*)(*theFastIntegralTable)[i]; v->DumpValues(); } } if (theSlowIntegralTable) { G4int PhysicsTableSize = theSlowIntegralTable->entries(); G4PhysicsOrderedFreeVector *v; for (G4int i = 0 ; i < PhysicsTableSize ; i++ ) { v = (G4PhysicsOrderedFreeVector*)(*theSlowIntegralTable)[i]; v->DumpValues(); } } } inline G4double G4Scintillation::single_exp(G4double t, G4double tau2) { return exp(-1.0*t/tau2)/tau2; } inline G4double G4Scintillation::bi_exp(G4double t, G4double tau1, G4double tau2) { return exp(-1.0*t/tau2)*(1-exp(-1.0*t/tau1))/tau2/tau2*(tau1+tau2); } #endif /* G4Scintillation_h */