// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4TransitionRadiation.hh,v 1.9 2006/06/29 19:55:47 gunter Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // G4TransitionRadiation -- header file // // Class for description of transition radiation generated // by charged particle crossed interface between material 1 // and material 2 (1 -> 2). Transition radiation could be of kind: // - optical back // - optical forward // - X-ray forward (for relativistic case Tkin/mass >= 10^2) // // GEANT 4 class header file --- Copyright CERN 1995 // CERB Geneva Switzerland // // for information related to this code, please, contact // CERN, CN Division, ASD Group // History: // 18.12.97, V. Grichine (Vladimir.Grichine@cern.ch) // 02.02.00, V.Grichine, new data fEnergy and fVarAngle for double // numerical integration in inherited classes // 03.06.03, V.Ivanchenko fix compilation warnings // 28.07.05, P.Gumplinger add G4ProcessType to constructor #ifndef G4TransitionRadiation_h #define G4TransitionRadiation_h #include "G4VDiscreteProcess.hh" #include "G4Material.hh" // #include "G4OpBoundaryProcess.hh" class G4TransitionRadiation : public G4VDiscreteProcess { public: // Constructors G4TransitionRadiation( const G4String& processName = "TR", G4ProcessType type = fElectromagnetic) ; // G4TransitionRadiation(const G4TransitionRadiation& right) ; // Destructor virtual ~G4TransitionRadiation() ; // Operators // G4TransitionRadiation& operator=(const G4TransitionRadiation& right) ; // G4int operator==(const G4TransitionRadiation& right)const ; // G4int operator!=(const G4TransitionRadiation& right)const ; // Methods G4bool IsApplicable(const G4ParticleDefinition& aParticleType) { return ( aParticleType.GetPDGCharge() != 0.0 ); } G4double GetMeanFreePath(const G4Track&, G4double, G4ForceCondition* condition) { *condition = Forced; return DBL_MAX; // so TR doesn't limit mean free path } G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&) { ClearNumberOfInteractionLengthLeft(); return &aParticleChange; } virtual G4double SpectralAngleTRdensity( G4double energy, G4double varAngle ) const = 0 ; G4double IntegralOverEnergy( G4double energy1, G4double energy2, G4double varAngle ) const ; G4double IntegralOverAngle( G4double energy, G4double varAngle1, G4double varAngle2 ) const ; G4double AngleIntegralDistribution( G4double varAngle1, G4double varAngle2 ) const ; G4double EnergyIntegralDistribution( G4double energy1, G4double energy2 ) const ; // Access functions protected : G4int fMatIndex1 ; // index of the 1st material G4int fMatIndex2 ; // index of the 2nd material // private : G4double fGamma ; G4double fEnergy ; G4double fVarAngle ; // Local constants static const G4int fSympsonNumber ; // Accuracy of Sympson integration 10 static const G4int fGammaNumber ; // = 15 static const G4int fPointNumber ; // = 100 G4double fMinEnergy ; // min TR energy G4double fMaxEnergy ; // max TR energy G4double fMaxTheta ; // max theta of TR quanta G4double fSigma1 ; // plasma energy Sq of matter1 G4double fSigma2 ; // plasma energy Sq of matter2 } ; #endif // G4TransitionRadiation_h