// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // /////////////////////////////////////////////////////////////////////////// // // Rough model describing a gamma function distributed radiator of X-ray // transition radiation. XTR is considered to flux after radiator! // Thicknesses of plates and gas gaps are distributed according to gamma // distribution. x are thicknesses of plates or gas gaps: // // p(x) = (alpha/)^alpha * x^(alpha-1) * std::exp(-alpha*x/) / G(alpha) // // G(alpha) is Euler's gamma function. // Plates have mean = fPlateThick > 0 and power alpha = fAlphaPlate > 0 : // Gas gaps have mean = fGasThick > 0 and power alpha = fAlphaGas > 0 : // We suppose that: // formation zone ~ mean thickness << absorption length // for each material and in the range 1-100 keV. This allows us to simplify // interference effects in radiator stack (GetStackFactor method). // // // History: // // 03.10.05 V. Grichine, first version // #ifndef G4XTRGammaRadModel_h #define G4XTRGammaRadModel_h 1 #include "G4VXTRenergyLoss.hh" class G4XTRGammaRadModel : public G4VXTRenergyLoss { public: G4XTRGammaRadModel (G4LogicalVolume *anEnvelope, G4double,G4double, G4Material*,G4Material*, G4double,G4double,G4int, const G4String & processName = "XTRgammaRadiator" ); virtual ~G4XTRGammaRadModel (); // Pure virtual function from base class G4double GetStackFactor( G4double energy, G4double gamma, G4double varAngle); private: // G4double fAlphaPlate, fAlphaGas ; }; #endif