| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Cerenkov.cc,v 1.23 2007/10/15 20:05:23 gum Exp $
|
|---|
| 28 | // GEANT4 tag $Name: $
|
|---|
| 29 | //
|
|---|
| 30 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 31 | // Cerenkov Radiation Class Implementation
|
|---|
| 32 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 33 | //
|
|---|
| 34 | // File: G4Cerenkov.cc
|
|---|
| 35 | // Description: Discrete Process -- Generation of Cerenkov Photons
|
|---|
| 36 | // Version: 2.1
|
|---|
| 37 | // Created: 1996-02-21
|
|---|
| 38 | // Author: Juliet Armstrong
|
|---|
| 39 | // Updated: 2007-09-30 by Peter Gumplinger
|
|---|
| 40 | // > change inheritance to G4VDiscreteProcess
|
|---|
| 41 | // GetContinuousStepLimit -> GetMeanFreePath (StronglyForced)
|
|---|
| 42 | // AlongStepDoIt -> PostStepDoIt
|
|---|
| 43 | // 2005-08-17 by Peter Gumplinger
|
|---|
| 44 | // > change variable name MeanNumPhotons -> MeanNumberOfPhotons
|
|---|
| 45 | // 2005-07-28 by Peter Gumplinger
|
|---|
| 46 | // > add G4ProcessType to constructor
|
|---|
| 47 | // 2001-09-17, migration of Materials to pure STL (mma)
|
|---|
| 48 | // 2000-11-12 by Peter Gumplinger
|
|---|
| 49 | // > add check on CerenkovAngleIntegrals->IsFilledVectorExist()
|
|---|
| 50 | // in method GetAverageNumberOfPhotons
|
|---|
| 51 | // > and a test for MeanNumberOfPhotons <= 0.0 in DoIt
|
|---|
| 52 | // 2000-09-18 by Peter Gumplinger
|
|---|
| 53 | // > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition();
|
|---|
| 54 | // aSecondaryTrack->SetTouchable(0);
|
|---|
| 55 | // 1999-10-29 by Peter Gumplinger
|
|---|
| 56 | // > change: == into <= in GetContinuousStepLimit
|
|---|
| 57 | // 1997-08-08 by Peter Gumplinger
|
|---|
| 58 | // > add protection against /0
|
|---|
| 59 | // > G4MaterialPropertiesTable; new physics/tracking scheme
|
|---|
| 60 | //
|
|---|
| 61 | // mail: gum@triumf.ca
|
|---|
| 62 | //
|
|---|
| 63 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 64 |
|
|---|
| 65 | #include "G4ios.hh"
|
|---|
| 66 | #include "G4Poisson.hh"
|
|---|
| 67 | #include "G4Cerenkov.hh"
|
|---|
| 68 |
|
|---|
| 69 | using namespace std;
|
|---|
| 70 |
|
|---|
| 71 | /////////////////////////
|
|---|
| 72 | // Class Implementation
|
|---|
| 73 | /////////////////////////
|
|---|
| 74 |
|
|---|
| 75 | //////////////
|
|---|
| 76 | // Operators
|
|---|
| 77 | //////////////
|
|---|
| 78 |
|
|---|
| 79 | // G4Cerenkov::operator=(const G4Cerenkov &right)
|
|---|
| 80 | // {
|
|---|
| 81 | // }
|
|---|
| 82 |
|
|---|
| 83 | /////////////////
|
|---|
| 84 | // Constructors
|
|---|
| 85 | /////////////////
|
|---|
| 86 |
|
|---|
| 87 | G4Cerenkov::G4Cerenkov(const G4String& processName, G4ProcessType type)
|
|---|
| 88 | : G4VDiscreteProcess(processName, type)
|
|---|
| 89 | {
|
|---|
| 90 | G4cout << "G4Cerenkov::G4Cerenkov constructor" << G4endl;
|
|---|
| 91 | G4cout << "NOTE: this is now a G4VDiscreteProcess!" << G4endl;
|
|---|
| 92 | G4cout << "Required change in UserPhysicsList: " << G4endl;
|
|---|
| 93 | G4cout << "change: pmanager->AddContinuousProcess(theCerenkovProcess);" << G4endl;
|
|---|
| 94 | G4cout << "to: pmanager->AddProcess(theCerenkovProcess);" << G4endl;
|
|---|
| 95 | G4cout << " pmanager->SetProcessOrdering(theCerenkovProcess,idxPostStep);" << G4endl;
|
|---|
| 96 |
|
|---|
| 97 | fTrackSecondariesFirst = false;
|
|---|
| 98 | fMaxPhotons = 0;
|
|---|
| 99 |
|
|---|
| 100 | thePhysicsTable = NULL;
|
|---|
| 101 |
|
|---|
| 102 | if (verboseLevel>0) {
|
|---|
| 103 | G4cout << GetProcessName() << " is created " << G4endl;
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 | BuildThePhysicsTable();
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 | // G4Cerenkov::G4Cerenkov(const G4Cerenkov &right)
|
|---|
| 110 | // {
|
|---|
| 111 | // }
|
|---|
| 112 |
|
|---|
| 113 | ////////////////
|
|---|
| 114 | // Destructors
|
|---|
| 115 | ////////////////
|
|---|
| 116 |
|
|---|
| 117 | G4Cerenkov::~G4Cerenkov()
|
|---|
| 118 | {
|
|---|
| 119 | if (thePhysicsTable != NULL) {
|
|---|
| 120 | thePhysicsTable->clearAndDestroy();
|
|---|
| 121 | delete thePhysicsTable;
|
|---|
| 122 | }
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | ////////////
|
|---|
| 126 | // Methods
|
|---|
| 127 | ////////////
|
|---|
| 128 |
|
|---|
| 129 | // PostStepDoIt
|
|---|
| 130 | // -------------
|
|---|
| 131 | //
|
|---|
| 132 | G4VParticleChange*
|
|---|
| 133 | G4Cerenkov::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 134 |
|
|---|
| 135 | // This routine is called for each tracking Step of a charged particle
|
|---|
| 136 | // in a radiator. A Poisson-distributed number of photons is generated
|
|---|
| 137 | // according to the Cerenkov formula, distributed evenly along the track
|
|---|
| 138 | // segment and uniformly azimuth w.r.t. the particle direction. The
|
|---|
| 139 | // parameters are then transformed into the Master Reference System, and
|
|---|
| 140 | // they are added to the particle change.
|
|---|
| 141 |
|
|---|
| 142 | {
|
|---|
| 143 |
|
|---|
| 144 | //////////////////////////////////////////////////////
|
|---|
| 145 | // Should we ensure that the material is dispersive?
|
|---|
| 146 | //////////////////////////////////////////////////////
|
|---|
| 147 |
|
|---|
| 148 | aParticleChange.Initialize(aTrack);
|
|---|
| 149 |
|
|---|
| 150 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 151 | const G4Material* aMaterial = aTrack.GetMaterial();
|
|---|
| 152 |
|
|---|
| 153 | G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint();
|
|---|
| 154 | G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
|
|---|
| 155 |
|
|---|
| 156 | G4ThreeVector x0 = pPreStepPoint->GetPosition();
|
|---|
| 157 | G4ThreeVector p0 = aStep.GetDeltaPosition().unit();
|
|---|
| 158 | G4double t0 = pPreStepPoint->GetGlobalTime();
|
|---|
| 159 |
|
|---|
| 160 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 161 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 162 | if (!aMaterialPropertiesTable)
|
|---|
| 163 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 164 |
|
|---|
| 165 | const G4MaterialPropertyVector* Rindex =
|
|---|
| 166 | aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 167 | if (!Rindex)
|
|---|
| 168 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 169 |
|
|---|
| 170 | // particle charge
|
|---|
| 171 | const G4double charge = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 172 |
|
|---|
| 173 | // particle beta
|
|---|
| 174 | const G4double beta = (pPreStepPoint ->GetBeta() +
|
|---|
| 175 | pPostStepPoint->GetBeta())/2.;
|
|---|
| 176 |
|
|---|
| 177 | G4double MeanNumberOfPhotons =
|
|---|
| 178 | GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
|
|---|
| 179 |
|
|---|
| 180 | if (MeanNumberOfPhotons <= 0.0) {
|
|---|
| 181 |
|
|---|
| 182 | // return unchanged particle and no secondaries
|
|---|
| 183 |
|
|---|
| 184 | aParticleChange.SetNumberOfSecondaries(0);
|
|---|
| 185 |
|
|---|
| 186 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 187 |
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 | G4double step_length;
|
|---|
| 191 | step_length = aStep.GetStepLength();
|
|---|
| 192 |
|
|---|
| 193 | MeanNumberOfPhotons = MeanNumberOfPhotons * step_length;
|
|---|
| 194 |
|
|---|
| 195 | G4int NumPhotons = (G4int) G4Poisson(MeanNumberOfPhotons);
|
|---|
| 196 |
|
|---|
| 197 | if (NumPhotons <= 0) {
|
|---|
| 198 |
|
|---|
| 199 | // return unchanged particle and no secondaries
|
|---|
| 200 |
|
|---|
| 201 | aParticleChange.SetNumberOfSecondaries(0);
|
|---|
| 202 |
|
|---|
| 203 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | ////////////////////////////////////////////////////////////////
|
|---|
| 207 |
|
|---|
| 208 | aParticleChange.SetNumberOfSecondaries(NumPhotons);
|
|---|
| 209 |
|
|---|
| 210 | if (fTrackSecondariesFirst) {
|
|---|
| 211 | if (aTrack.GetTrackStatus() == fAlive )
|
|---|
| 212 | aParticleChange.ProposeTrackStatus(fSuspend);
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | ////////////////////////////////////////////////////////////////
|
|---|
| 216 |
|
|---|
| 217 | G4double Pmin = Rindex->GetMinPhotonMomentum();
|
|---|
| 218 | G4double Pmax = Rindex->GetMaxPhotonMomentum();
|
|---|
| 219 | G4double dp = Pmax - Pmin;
|
|---|
| 220 |
|
|---|
| 221 | G4double nMax = Rindex->GetMaxProperty();
|
|---|
| 222 |
|
|---|
| 223 | G4double BetaInverse = 1./beta;
|
|---|
| 224 |
|
|---|
| 225 | G4double maxCos = BetaInverse / nMax;
|
|---|
| 226 | G4double maxSin2 = (1.0 - maxCos) * (1.0 + maxCos);
|
|---|
| 227 |
|
|---|
| 228 | for (G4int i = 0; i < NumPhotons; i++) {
|
|---|
| 229 |
|
|---|
| 230 | // Determine photon momentum
|
|---|
| 231 |
|
|---|
| 232 | G4double rand;
|
|---|
| 233 | G4double sampledMomentum, sampledRI;
|
|---|
| 234 | G4double cosTheta, sin2Theta;
|
|---|
| 235 |
|
|---|
| 236 | // sample a momentum
|
|---|
| 237 |
|
|---|
| 238 | do {
|
|---|
| 239 | rand = G4UniformRand();
|
|---|
| 240 | sampledMomentum = Pmin + rand * dp;
|
|---|
| 241 | sampledRI = Rindex->GetProperty(sampledMomentum);
|
|---|
| 242 | cosTheta = BetaInverse / sampledRI;
|
|---|
| 243 |
|
|---|
| 244 | sin2Theta = (1.0 - cosTheta)*(1.0 + cosTheta);
|
|---|
| 245 | rand = G4UniformRand();
|
|---|
| 246 |
|
|---|
| 247 | } while (rand*maxSin2 > sin2Theta);
|
|---|
| 248 |
|
|---|
| 249 | // Generate random position of photon on cone surface
|
|---|
| 250 | // defined by Theta
|
|---|
| 251 |
|
|---|
| 252 | rand = G4UniformRand();
|
|---|
| 253 |
|
|---|
| 254 | G4double phi = twopi*rand;
|
|---|
| 255 | G4double sinPhi = sin(phi);
|
|---|
| 256 | G4double cosPhi = cos(phi);
|
|---|
| 257 |
|
|---|
| 258 | // calculate x,y, and z components of photon momentum
|
|---|
| 259 | // (in coord system with primary particle direction
|
|---|
| 260 | // aligned with the z axis)
|
|---|
| 261 |
|
|---|
| 262 | G4double sinTheta = sqrt(sin2Theta);
|
|---|
| 263 | G4double px = sinTheta*cosPhi;
|
|---|
| 264 | G4double py = sinTheta*sinPhi;
|
|---|
| 265 | G4double pz = cosTheta;
|
|---|
| 266 |
|
|---|
| 267 | // Create photon momentum direction vector
|
|---|
| 268 | // The momentum direction is still with respect
|
|---|
| 269 | // to the coordinate system where the primary
|
|---|
| 270 | // particle direction is aligned with the z axis
|
|---|
| 271 |
|
|---|
| 272 | G4ParticleMomentum photonMomentum(px, py, pz);
|
|---|
| 273 |
|
|---|
| 274 | // Rotate momentum direction back to global reference
|
|---|
| 275 | // system
|
|---|
| 276 |
|
|---|
| 277 | photonMomentum.rotateUz(p0);
|
|---|
| 278 |
|
|---|
| 279 | // Determine polarization of new photon
|
|---|
| 280 |
|
|---|
| 281 | G4double sx = cosTheta*cosPhi;
|
|---|
| 282 | G4double sy = cosTheta*sinPhi;
|
|---|
| 283 | G4double sz = -sinTheta;
|
|---|
| 284 |
|
|---|
| 285 | G4ThreeVector photonPolarization(sx, sy, sz);
|
|---|
| 286 |
|
|---|
| 287 | // Rotate back to original coord system
|
|---|
| 288 |
|
|---|
| 289 | photonPolarization.rotateUz(p0);
|
|---|
| 290 |
|
|---|
| 291 | // Generate a new photon:
|
|---|
| 292 |
|
|---|
| 293 | G4DynamicParticle* aCerenkovPhoton =
|
|---|
| 294 | new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(),
|
|---|
| 295 | photonMomentum);
|
|---|
| 296 | aCerenkovPhoton->SetPolarization
|
|---|
| 297 | (photonPolarization.x(),
|
|---|
| 298 | photonPolarization.y(),
|
|---|
| 299 | photonPolarization.z());
|
|---|
| 300 |
|
|---|
| 301 | aCerenkovPhoton->SetKineticEnergy(sampledMomentum);
|
|---|
| 302 |
|
|---|
| 303 | // Generate new G4Track object:
|
|---|
| 304 |
|
|---|
| 305 | rand = G4UniformRand();
|
|---|
| 306 |
|
|---|
| 307 | G4double delta = rand * aStep.GetStepLength();
|
|---|
| 308 | G4double deltaTime = delta /
|
|---|
| 309 | ((pPreStepPoint->GetVelocity()+
|
|---|
| 310 | pPostStepPoint->GetVelocity())/2.);
|
|---|
| 311 |
|
|---|
| 312 | G4double aSecondaryTime = t0 + deltaTime;
|
|---|
| 313 |
|
|---|
| 314 | G4ThreeVector aSecondaryPosition =
|
|---|
| 315 | x0 + rand * aStep.GetDeltaPosition();
|
|---|
| 316 |
|
|---|
| 317 | G4Track* aSecondaryTrack =
|
|---|
| 318 | new G4Track(aCerenkovPhoton,aSecondaryTime,aSecondaryPosition);
|
|---|
| 319 |
|
|---|
| 320 | aSecondaryTrack->SetTouchableHandle((G4VTouchable*)0);
|
|---|
| 321 |
|
|---|
| 322 | aSecondaryTrack->SetParentID(aTrack.GetTrackID());
|
|---|
| 323 |
|
|---|
| 324 | aParticleChange.AddSecondary(aSecondaryTrack);
|
|---|
| 325 | }
|
|---|
| 326 |
|
|---|
| 327 | if (verboseLevel>0) {
|
|---|
| 328 | G4cout << "\n Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = "
|
|---|
| 329 | << aParticleChange.GetNumberOfSecondaries() << G4endl;
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | // BuildThePhysicsTable for the Cerenkov process
|
|---|
| 336 | // ---------------------------------------------
|
|---|
| 337 | //
|
|---|
| 338 |
|
|---|
| 339 | void G4Cerenkov::BuildThePhysicsTable()
|
|---|
| 340 | {
|
|---|
| 341 | if (thePhysicsTable) return;
|
|---|
| 342 |
|
|---|
| 343 | const G4MaterialTable* theMaterialTable=
|
|---|
| 344 | G4Material::GetMaterialTable();
|
|---|
| 345 | G4int numOfMaterials = G4Material::GetNumberOfMaterials();
|
|---|
| 346 |
|
|---|
| 347 | // create new physics table
|
|---|
| 348 |
|
|---|
| 349 | thePhysicsTable = new G4PhysicsTable(numOfMaterials);
|
|---|
| 350 |
|
|---|
| 351 | // loop for materials
|
|---|
| 352 |
|
|---|
| 353 | for (G4int i=0 ; i < numOfMaterials; i++)
|
|---|
| 354 | {
|
|---|
| 355 | G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector =
|
|---|
| 356 | new G4PhysicsOrderedFreeVector();
|
|---|
| 357 |
|
|---|
| 358 | // Retrieve vector of refraction indices for the material
|
|---|
| 359 | // from the material's optical properties table
|
|---|
| 360 |
|
|---|
| 361 | G4Material* aMaterial = (*theMaterialTable)[i];
|
|---|
| 362 |
|
|---|
| 363 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 364 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 365 |
|
|---|
| 366 | if (aMaterialPropertiesTable) {
|
|---|
| 367 |
|
|---|
| 368 | G4MaterialPropertyVector* theRefractionIndexVector =
|
|---|
| 369 | aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 370 |
|
|---|
| 371 | if (theRefractionIndexVector) {
|
|---|
| 372 |
|
|---|
| 373 | // Retrieve the first refraction index in vector
|
|---|
| 374 | // of (photon momentum, refraction index) pairs
|
|---|
| 375 |
|
|---|
| 376 | theRefractionIndexVector->ResetIterator();
|
|---|
| 377 | ++(*theRefractionIndexVector); // advance to 1st entry
|
|---|
| 378 |
|
|---|
| 379 | G4double currentRI = theRefractionIndexVector->
|
|---|
| 380 | GetProperty();
|
|---|
| 381 |
|
|---|
| 382 | if (currentRI > 1.0) {
|
|---|
| 383 |
|
|---|
| 384 | // Create first (photon momentum, Cerenkov Integral)
|
|---|
| 385 | // pair
|
|---|
| 386 |
|
|---|
| 387 | G4double currentPM = theRefractionIndexVector->
|
|---|
| 388 | GetPhotonMomentum();
|
|---|
| 389 | G4double currentCAI = 0.0;
|
|---|
| 390 |
|
|---|
| 391 | aPhysicsOrderedFreeVector->
|
|---|
| 392 | InsertValues(currentPM , currentCAI);
|
|---|
| 393 |
|
|---|
| 394 | // Set previous values to current ones prior to loop
|
|---|
| 395 |
|
|---|
| 396 | G4double prevPM = currentPM;
|
|---|
| 397 | G4double prevCAI = currentCAI;
|
|---|
| 398 | G4double prevRI = currentRI;
|
|---|
| 399 |
|
|---|
| 400 | // loop over all (photon momentum, refraction index)
|
|---|
| 401 | // pairs stored for this material
|
|---|
| 402 |
|
|---|
| 403 | while(++(*theRefractionIndexVector))
|
|---|
| 404 | {
|
|---|
| 405 | currentRI=theRefractionIndexVector->
|
|---|
| 406 | GetProperty();
|
|---|
| 407 |
|
|---|
| 408 | currentPM = theRefractionIndexVector->
|
|---|
| 409 | GetPhotonMomentum();
|
|---|
| 410 |
|
|---|
| 411 | currentCAI = 0.5*(1.0/(prevRI*prevRI) +
|
|---|
| 412 | 1.0/(currentRI*currentRI));
|
|---|
| 413 |
|
|---|
| 414 | currentCAI = prevCAI +
|
|---|
| 415 | (currentPM - prevPM) * currentCAI;
|
|---|
| 416 |
|
|---|
| 417 | aPhysicsOrderedFreeVector->
|
|---|
| 418 | InsertValues(currentPM, currentCAI);
|
|---|
| 419 |
|
|---|
| 420 | prevPM = currentPM;
|
|---|
| 421 | prevCAI = currentCAI;
|
|---|
| 422 | prevRI = currentRI;
|
|---|
| 423 | }
|
|---|
| 424 |
|
|---|
| 425 | }
|
|---|
| 426 | }
|
|---|
| 427 | }
|
|---|
| 428 |
|
|---|
| 429 | // The Cerenkov integral for a given material
|
|---|
| 430 | // will be inserted in thePhysicsTable
|
|---|
| 431 | // according to the position of the material in
|
|---|
| 432 | // the material table.
|
|---|
| 433 |
|
|---|
| 434 | thePhysicsTable->insertAt(i,aPhysicsOrderedFreeVector);
|
|---|
| 435 |
|
|---|
| 436 | }
|
|---|
| 437 | }
|
|---|
| 438 |
|
|---|
| 439 | // GetMeanFreePath
|
|---|
| 440 | // ---------------
|
|---|
| 441 | //
|
|---|
| 442 |
|
|---|
| 443 | G4double G4Cerenkov::GetMeanFreePath(const G4Track& aTrack,
|
|---|
| 444 | G4double,
|
|---|
| 445 | G4ForceCondition* condition)
|
|---|
| 446 | {
|
|---|
| 447 | *condition = StronglyForced;
|
|---|
| 448 |
|
|---|
| 449 | // If user has defined an average maximum number of photons to
|
|---|
| 450 | // be generated in a Step, then return the Step length for that
|
|---|
| 451 | // number of photons.
|
|---|
| 452 |
|
|---|
| 453 | if (fMaxPhotons <= 0) return DBL_MAX;
|
|---|
| 454 |
|
|---|
| 455 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 456 | const G4Material* aMaterial = aTrack.GetMaterial();
|
|---|
| 457 |
|
|---|
| 458 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 459 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 460 | if (!aMaterialPropertiesTable) return DBL_MAX;
|
|---|
| 461 |
|
|---|
| 462 | const G4MaterialPropertyVector* Rindex =
|
|---|
| 463 | aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 464 | if (!Rindex) return DBL_MAX;
|
|---|
| 465 |
|
|---|
| 466 | // particle charge
|
|---|
| 467 | const G4double charge = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 468 |
|
|---|
| 469 | // particle beta
|
|---|
| 470 | const G4double beta = aParticle->GetTotalMomentum() /
|
|---|
| 471 | aParticle->GetTotalEnergy();
|
|---|
| 472 |
|
|---|
| 473 | G4double MeanNumberOfPhotons =
|
|---|
| 474 | GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
|
|---|
| 475 |
|
|---|
| 476 | if(MeanNumberOfPhotons <= 0.0) return DBL_MAX;
|
|---|
| 477 |
|
|---|
| 478 | G4double StepLimit = fMaxPhotons / MeanNumberOfPhotons;
|
|---|
| 479 |
|
|---|
| 480 | return StepLimit;
|
|---|
| 481 | }
|
|---|
| 482 |
|
|---|
| 483 | // GetAverageNumberOfPhotons
|
|---|
| 484 | // -------------------------
|
|---|
| 485 | // This routine computes the number of Cerenkov photons produced per
|
|---|
| 486 | // GEANT-unit (millimeter) in the current medium.
|
|---|
| 487 | // ^^^^^^^^^^
|
|---|
| 488 |
|
|---|
| 489 | G4double
|
|---|
| 490 | G4Cerenkov::GetAverageNumberOfPhotons(const G4double charge,
|
|---|
| 491 | const G4double beta,
|
|---|
| 492 | const G4Material* aMaterial,
|
|---|
| 493 | const G4MaterialPropertyVector* Rindex) const
|
|---|
| 494 | {
|
|---|
| 495 | const G4double Rfact = 369.81/(eV * cm);
|
|---|
| 496 |
|
|---|
| 497 | if(beta <= 0.0)return 0.0;
|
|---|
| 498 |
|
|---|
| 499 | G4double BetaInverse = 1./beta;
|
|---|
| 500 |
|
|---|
| 501 | // Vectors used in computation of Cerenkov Angle Integral:
|
|---|
| 502 | // - Refraction Indices for the current material
|
|---|
| 503 | // - new G4PhysicsOrderedFreeVector allocated to hold CAI's
|
|---|
| 504 |
|
|---|
| 505 | G4int materialIndex = aMaterial->GetIndex();
|
|---|
| 506 |
|
|---|
| 507 | // Retrieve the Cerenkov Angle Integrals for this material
|
|---|
| 508 |
|
|---|
| 509 | G4PhysicsOrderedFreeVector* CerenkovAngleIntegrals =
|
|---|
| 510 | (G4PhysicsOrderedFreeVector*)((*thePhysicsTable)(materialIndex));
|
|---|
| 511 |
|
|---|
| 512 | if(!(CerenkovAngleIntegrals->IsFilledVectorExist()))return 0.0;
|
|---|
| 513 |
|
|---|
| 514 | // Min and Max photon momenta
|
|---|
| 515 | G4double Pmin = Rindex->GetMinPhotonMomentum();
|
|---|
| 516 | G4double Pmax = Rindex->GetMaxPhotonMomentum();
|
|---|
| 517 |
|
|---|
| 518 | // Min and Max Refraction Indices
|
|---|
| 519 | G4double nMin = Rindex->GetMinProperty();
|
|---|
| 520 | G4double nMax = Rindex->GetMaxProperty();
|
|---|
| 521 |
|
|---|
| 522 | // Max Cerenkov Angle Integral
|
|---|
| 523 | G4double CAImax = CerenkovAngleIntegrals->GetMaxValue();
|
|---|
| 524 |
|
|---|
| 525 | G4double dp, ge;
|
|---|
| 526 |
|
|---|
| 527 | // If n(Pmax) < 1/Beta -- no photons generated
|
|---|
| 528 |
|
|---|
| 529 | if (nMax < BetaInverse) {
|
|---|
| 530 | dp = 0;
|
|---|
| 531 | ge = 0;
|
|---|
| 532 | }
|
|---|
| 533 |
|
|---|
| 534 | // otherwise if n(Pmin) >= 1/Beta -- photons generated
|
|---|
| 535 |
|
|---|
| 536 | else if (nMin > BetaInverse) {
|
|---|
| 537 | dp = Pmax - Pmin;
|
|---|
| 538 | ge = CAImax;
|
|---|
| 539 | }
|
|---|
| 540 |
|
|---|
| 541 | // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Beta, then
|
|---|
| 542 | // we need to find a P such that the value of n(P) == 1/Beta.
|
|---|
| 543 | // Interpolation is performed by the GetPhotonMomentum() and
|
|---|
| 544 | // GetProperty() methods of the G4MaterialPropertiesTable and
|
|---|
| 545 | // the GetValue() method of G4PhysicsVector.
|
|---|
| 546 |
|
|---|
| 547 | else {
|
|---|
| 548 | Pmin = Rindex->GetPhotonMomentum(BetaInverse);
|
|---|
| 549 | dp = Pmax - Pmin;
|
|---|
| 550 |
|
|---|
| 551 | // need boolean for current implementation of G4PhysicsVector
|
|---|
| 552 | // ==> being phased out
|
|---|
| 553 | G4bool isOutRange;
|
|---|
| 554 | G4double CAImin = CerenkovAngleIntegrals->
|
|---|
| 555 | GetValue(Pmin, isOutRange);
|
|---|
| 556 | ge = CAImax - CAImin;
|
|---|
| 557 |
|
|---|
| 558 | if (verboseLevel>0) {
|
|---|
| 559 | G4cout << "CAImin = " << CAImin << G4endl;
|
|---|
| 560 | G4cout << "ge = " << ge << G4endl;
|
|---|
| 561 | }
|
|---|
| 562 | }
|
|---|
| 563 |
|
|---|
| 564 | // Calculate number of photons
|
|---|
| 565 | G4double NumPhotons = Rfact * charge/eplus * charge/eplus *
|
|---|
| 566 | (dp - ge * BetaInverse*BetaInverse);
|
|---|
| 567 |
|
|---|
| 568 | return NumPhotons;
|
|---|
| 569 | }
|
|---|