| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Cerenkov.cc,v 1.26 2008/11/14 20:16:51 gum Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| 29 | //
|
|---|
| 30 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 31 | // Cerenkov Radiation Class Implementation
|
|---|
| 32 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 33 | //
|
|---|
| 34 | // File: G4Cerenkov.cc
|
|---|
| 35 | // Description: Discrete Process -- Generation of Cerenkov Photons
|
|---|
| 36 | // Version: 2.1
|
|---|
| 37 | // Created: 1996-02-21
|
|---|
| 38 | // Author: Juliet Armstrong
|
|---|
| 39 | // Updated: 2007-09-30 by Peter Gumplinger
|
|---|
| 40 | // > change inheritance to G4VDiscreteProcess
|
|---|
| 41 | // GetContinuousStepLimit -> GetMeanFreePath (StronglyForced)
|
|---|
| 42 | // AlongStepDoIt -> PostStepDoIt
|
|---|
| 43 | // 2005-08-17 by Peter Gumplinger
|
|---|
| 44 | // > change variable name MeanNumPhotons -> MeanNumberOfPhotons
|
|---|
| 45 | // 2005-07-28 by Peter Gumplinger
|
|---|
| 46 | // > add G4ProcessType to constructor
|
|---|
| 47 | // 2001-09-17, migration of Materials to pure STL (mma)
|
|---|
| 48 | // 2000-11-12 by Peter Gumplinger
|
|---|
| 49 | // > add check on CerenkovAngleIntegrals->IsFilledVectorExist()
|
|---|
| 50 | // in method GetAverageNumberOfPhotons
|
|---|
| 51 | // > and a test for MeanNumberOfPhotons <= 0.0 in DoIt
|
|---|
| 52 | // 2000-09-18 by Peter Gumplinger
|
|---|
| 53 | // > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition();
|
|---|
| 54 | // aSecondaryTrack->SetTouchable(0);
|
|---|
| 55 | // 1999-10-29 by Peter Gumplinger
|
|---|
| 56 | // > change: == into <= in GetContinuousStepLimit
|
|---|
| 57 | // 1997-08-08 by Peter Gumplinger
|
|---|
| 58 | // > add protection against /0
|
|---|
| 59 | // > G4MaterialPropertiesTable; new physics/tracking scheme
|
|---|
| 60 | //
|
|---|
| 61 | // mail: gum@triumf.ca
|
|---|
| 62 | //
|
|---|
| 63 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 64 |
|
|---|
| 65 | #include "G4ios.hh"
|
|---|
| 66 | #include "G4Poisson.hh"
|
|---|
| 67 | #include "G4EmProcessSubType.hh"
|
|---|
| 68 |
|
|---|
| 69 | #include "G4LossTableManager.hh"
|
|---|
| 70 | #include "G4MaterialCutsCouple.hh"
|
|---|
| 71 | #include "G4ParticleDefinition.hh"
|
|---|
| 72 |
|
|---|
| 73 | #include "G4Cerenkov.hh"
|
|---|
| 74 |
|
|---|
| 75 | using namespace std;
|
|---|
| 76 |
|
|---|
| 77 | /////////////////////////
|
|---|
| 78 | // Class Implementation
|
|---|
| 79 | /////////////////////////
|
|---|
| 80 |
|
|---|
| 81 | //////////////
|
|---|
| 82 | // Operators
|
|---|
| 83 | //////////////
|
|---|
| 84 |
|
|---|
| 85 | // G4Cerenkov::operator=(const G4Cerenkov &right)
|
|---|
| 86 | // {
|
|---|
| 87 | // }
|
|---|
| 88 |
|
|---|
| 89 | /////////////////
|
|---|
| 90 | // Constructors
|
|---|
| 91 | /////////////////
|
|---|
| 92 |
|
|---|
| 93 | G4Cerenkov::G4Cerenkov(const G4String& processName, G4ProcessType type)
|
|---|
| 94 | : G4VProcess(processName, type)
|
|---|
| 95 | {
|
|---|
| 96 | G4cout << "G4Cerenkov::G4Cerenkov constructor" << G4endl;
|
|---|
| 97 | G4cout << "NOTE: this is now a G4VProcess!" << G4endl;
|
|---|
| 98 | G4cout << "Required change in UserPhysicsList: " << G4endl;
|
|---|
| 99 | G4cout << "change: pmanager->AddContinuousProcess(theCerenkovProcess);" << G4endl;
|
|---|
| 100 | G4cout << "to: pmanager->AddProcess(theCerenkovProcess);" << G4endl;
|
|---|
| 101 | G4cout << " pmanager->SetProcessOrdering(theCerenkovProcess,idxPostStep);" << G4endl;
|
|---|
| 102 |
|
|---|
| 103 | SetProcessSubType(fCerenkov);
|
|---|
| 104 |
|
|---|
| 105 | fTrackSecondariesFirst = false;
|
|---|
| 106 | fMaxBetaChange = 0.;
|
|---|
| 107 | fMaxPhotons = 0;
|
|---|
| 108 |
|
|---|
| 109 | thePhysicsTable = NULL;
|
|---|
| 110 |
|
|---|
| 111 | if (verboseLevel>0) {
|
|---|
| 112 | G4cout << GetProcessName() << " is created " << G4endl;
|
|---|
| 113 | }
|
|---|
| 114 |
|
|---|
| 115 | BuildThePhysicsTable();
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | // G4Cerenkov::G4Cerenkov(const G4Cerenkov &right)
|
|---|
| 119 | // {
|
|---|
| 120 | // }
|
|---|
| 121 |
|
|---|
| 122 | ////////////////
|
|---|
| 123 | // Destructors
|
|---|
| 124 | ////////////////
|
|---|
| 125 |
|
|---|
| 126 | G4Cerenkov::~G4Cerenkov()
|
|---|
| 127 | {
|
|---|
| 128 | if (thePhysicsTable != NULL) {
|
|---|
| 129 | thePhysicsTable->clearAndDestroy();
|
|---|
| 130 | delete thePhysicsTable;
|
|---|
| 131 | }
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 | ////////////
|
|---|
| 135 | // Methods
|
|---|
| 136 | ////////////
|
|---|
| 137 |
|
|---|
| 138 | // PostStepDoIt
|
|---|
| 139 | // -------------
|
|---|
| 140 | //
|
|---|
| 141 | G4VParticleChange*
|
|---|
| 142 | G4Cerenkov::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 143 |
|
|---|
| 144 | // This routine is called for each tracking Step of a charged particle
|
|---|
| 145 | // in a radiator. A Poisson-distributed number of photons is generated
|
|---|
| 146 | // according to the Cerenkov formula, distributed evenly along the track
|
|---|
| 147 | // segment and uniformly azimuth w.r.t. the particle direction. The
|
|---|
| 148 | // parameters are then transformed into the Master Reference System, and
|
|---|
| 149 | // they are added to the particle change.
|
|---|
| 150 |
|
|---|
| 151 | {
|
|---|
| 152 | //////////////////////////////////////////////////////
|
|---|
| 153 | // Should we ensure that the material is dispersive?
|
|---|
| 154 | //////////////////////////////////////////////////////
|
|---|
| 155 |
|
|---|
| 156 | aParticleChange.Initialize(aTrack);
|
|---|
| 157 |
|
|---|
| 158 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 159 | const G4Material* aMaterial = aTrack.GetMaterial();
|
|---|
| 160 |
|
|---|
| 161 | G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint();
|
|---|
| 162 | G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
|
|---|
| 163 |
|
|---|
| 164 | G4ThreeVector x0 = pPreStepPoint->GetPosition();
|
|---|
| 165 | G4ThreeVector p0 = aStep.GetDeltaPosition().unit();
|
|---|
| 166 | G4double t0 = pPreStepPoint->GetGlobalTime();
|
|---|
| 167 |
|
|---|
| 168 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 169 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 170 | if (!aMaterialPropertiesTable) return pParticleChange;
|
|---|
| 171 |
|
|---|
| 172 | const G4MaterialPropertyVector* Rindex =
|
|---|
| 173 | aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 174 | if (!Rindex) return pParticleChange;
|
|---|
| 175 |
|
|---|
| 176 | // particle charge
|
|---|
| 177 | const G4double charge = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 178 |
|
|---|
| 179 | // particle beta
|
|---|
| 180 | const G4double beta = (pPreStepPoint ->GetBeta() +
|
|---|
| 181 | pPostStepPoint->GetBeta())/2.;
|
|---|
| 182 |
|
|---|
| 183 | G4double MeanNumberOfPhotons =
|
|---|
| 184 | GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
|
|---|
| 185 |
|
|---|
| 186 | if (MeanNumberOfPhotons <= 0.0) {
|
|---|
| 187 |
|
|---|
| 188 | // return unchanged particle and no secondaries
|
|---|
| 189 |
|
|---|
| 190 | aParticleChange.SetNumberOfSecondaries(0);
|
|---|
| 191 |
|
|---|
| 192 | return pParticleChange;
|
|---|
| 193 |
|
|---|
| 194 | }
|
|---|
| 195 |
|
|---|
| 196 | G4double step_length;
|
|---|
| 197 | step_length = aStep.GetStepLength();
|
|---|
| 198 |
|
|---|
| 199 | MeanNumberOfPhotons = MeanNumberOfPhotons * step_length;
|
|---|
| 200 |
|
|---|
| 201 | G4int NumPhotons = (G4int) G4Poisson(MeanNumberOfPhotons);
|
|---|
| 202 |
|
|---|
| 203 | if (NumPhotons <= 0) {
|
|---|
| 204 |
|
|---|
| 205 | // return unchanged particle and no secondaries
|
|---|
| 206 |
|
|---|
| 207 | aParticleChange.SetNumberOfSecondaries(0);
|
|---|
| 208 |
|
|---|
| 209 | return pParticleChange;
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | ////////////////////////////////////////////////////////////////
|
|---|
| 213 |
|
|---|
| 214 | aParticleChange.SetNumberOfSecondaries(NumPhotons);
|
|---|
| 215 |
|
|---|
| 216 | if (fTrackSecondariesFirst) {
|
|---|
| 217 | if (aTrack.GetTrackStatus() == fAlive )
|
|---|
| 218 | aParticleChange.ProposeTrackStatus(fSuspend);
|
|---|
| 219 | }
|
|---|
| 220 |
|
|---|
| 221 | ////////////////////////////////////////////////////////////////
|
|---|
| 222 |
|
|---|
| 223 | G4double Pmin = Rindex->GetMinPhotonEnergy();
|
|---|
| 224 | G4double Pmax = Rindex->GetMaxPhotonEnergy();
|
|---|
| 225 | G4double dp = Pmax - Pmin;
|
|---|
| 226 |
|
|---|
| 227 | G4double nMax = Rindex->GetMaxProperty();
|
|---|
| 228 |
|
|---|
| 229 | G4double BetaInverse = 1./beta;
|
|---|
| 230 |
|
|---|
| 231 | G4double maxCos = BetaInverse / nMax;
|
|---|
| 232 | G4double maxSin2 = (1.0 - maxCos) * (1.0 + maxCos);
|
|---|
| 233 |
|
|---|
| 234 | const G4double beta1 = pPreStepPoint ->GetBeta();
|
|---|
| 235 | const G4double beta2 = pPostStepPoint->GetBeta();
|
|---|
| 236 |
|
|---|
| 237 | G4double MeanNumberOfPhotons1 =
|
|---|
| 238 | GetAverageNumberOfPhotons(charge,beta1,aMaterial,Rindex);
|
|---|
| 239 | G4double MeanNumberOfPhotons2 =
|
|---|
| 240 | GetAverageNumberOfPhotons(charge,beta2,aMaterial,Rindex);
|
|---|
| 241 |
|
|---|
| 242 | for (G4int i = 0; i < NumPhotons; i++) {
|
|---|
| 243 |
|
|---|
| 244 | // Determine photon energy
|
|---|
| 245 |
|
|---|
| 246 | G4double rand;
|
|---|
| 247 | G4double sampledEnergy, sampledRI;
|
|---|
| 248 | G4double cosTheta, sin2Theta;
|
|---|
| 249 |
|
|---|
| 250 | // sample an energy
|
|---|
| 251 |
|
|---|
| 252 | do {
|
|---|
| 253 | rand = G4UniformRand();
|
|---|
| 254 | sampledEnergy = Pmin + rand * dp;
|
|---|
| 255 | sampledRI = Rindex->GetProperty(sampledEnergy);
|
|---|
| 256 | cosTheta = BetaInverse / sampledRI;
|
|---|
| 257 |
|
|---|
| 258 | sin2Theta = (1.0 - cosTheta)*(1.0 + cosTheta);
|
|---|
| 259 | rand = G4UniformRand();
|
|---|
| 260 |
|
|---|
| 261 | } while (rand*maxSin2 > sin2Theta);
|
|---|
| 262 |
|
|---|
| 263 | // Generate random position of photon on cone surface
|
|---|
| 264 | // defined by Theta
|
|---|
| 265 |
|
|---|
| 266 | rand = G4UniformRand();
|
|---|
| 267 |
|
|---|
| 268 | G4double phi = twopi*rand;
|
|---|
| 269 | G4double sinPhi = sin(phi);
|
|---|
| 270 | G4double cosPhi = cos(phi);
|
|---|
| 271 |
|
|---|
| 272 | // calculate x,y, and z components of photon energy
|
|---|
| 273 | // (in coord system with primary particle direction
|
|---|
| 274 | // aligned with the z axis)
|
|---|
| 275 |
|
|---|
| 276 | G4double sinTheta = sqrt(sin2Theta);
|
|---|
| 277 | G4double px = sinTheta*cosPhi;
|
|---|
| 278 | G4double py = sinTheta*sinPhi;
|
|---|
| 279 | G4double pz = cosTheta;
|
|---|
| 280 |
|
|---|
| 281 | // Create photon momentum direction vector
|
|---|
| 282 | // The momentum direction is still with respect
|
|---|
| 283 | // to the coordinate system where the primary
|
|---|
| 284 | // particle direction is aligned with the z axis
|
|---|
| 285 |
|
|---|
| 286 | G4ParticleMomentum photonMomentum(px, py, pz);
|
|---|
| 287 |
|
|---|
| 288 | // Rotate momentum direction back to global reference
|
|---|
| 289 | // system
|
|---|
| 290 |
|
|---|
| 291 | photonMomentum.rotateUz(p0);
|
|---|
| 292 |
|
|---|
| 293 | // Determine polarization of new photon
|
|---|
| 294 |
|
|---|
| 295 | G4double sx = cosTheta*cosPhi;
|
|---|
| 296 | G4double sy = cosTheta*sinPhi;
|
|---|
| 297 | G4double sz = -sinTheta;
|
|---|
| 298 |
|
|---|
| 299 | G4ThreeVector photonPolarization(sx, sy, sz);
|
|---|
| 300 |
|
|---|
| 301 | // Rotate back to original coord system
|
|---|
| 302 |
|
|---|
| 303 | photonPolarization.rotateUz(p0);
|
|---|
| 304 |
|
|---|
| 305 | // Generate a new photon:
|
|---|
| 306 |
|
|---|
| 307 | G4DynamicParticle* aCerenkovPhoton =
|
|---|
| 308 | new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(),
|
|---|
| 309 | photonMomentum);
|
|---|
| 310 | aCerenkovPhoton->SetPolarization
|
|---|
| 311 | (photonPolarization.x(),
|
|---|
| 312 | photonPolarization.y(),
|
|---|
| 313 | photonPolarization.z());
|
|---|
| 314 |
|
|---|
| 315 | aCerenkovPhoton->SetKineticEnergy(sampledEnergy);
|
|---|
| 316 |
|
|---|
| 317 | // Generate new G4Track object:
|
|---|
| 318 |
|
|---|
| 319 | G4double delta, NumberOfPhotons, N;
|
|---|
| 320 |
|
|---|
| 321 | do {
|
|---|
| 322 | rand = G4UniformRand();
|
|---|
| 323 | delta = rand * aStep.GetStepLength();
|
|---|
| 324 | NumberOfPhotons = MeanNumberOfPhotons1 - delta *
|
|---|
| 325 | (MeanNumberOfPhotons1-MeanNumberOfPhotons2)/
|
|---|
| 326 | aStep.GetStepLength();
|
|---|
| 327 | N = G4UniformRand() *
|
|---|
| 328 | std::max(MeanNumberOfPhotons1,MeanNumberOfPhotons2);
|
|---|
| 329 | } while (N > NumberOfPhotons);
|
|---|
| 330 |
|
|---|
| 331 | G4double deltaTime = delta /
|
|---|
| 332 | ((pPreStepPoint->GetVelocity()+
|
|---|
| 333 | pPostStepPoint->GetVelocity())/2.);
|
|---|
| 334 |
|
|---|
| 335 | G4double aSecondaryTime = t0 + deltaTime;
|
|---|
| 336 |
|
|---|
| 337 | G4ThreeVector aSecondaryPosition =
|
|---|
| 338 | x0 + rand * aStep.GetDeltaPosition();
|
|---|
| 339 |
|
|---|
| 340 | G4Track* aSecondaryTrack =
|
|---|
| 341 | new G4Track(aCerenkovPhoton,aSecondaryTime,aSecondaryPosition);
|
|---|
| 342 |
|
|---|
| 343 | aSecondaryTrack->SetTouchableHandle(
|
|---|
| 344 | aStep.GetPreStepPoint()->GetTouchableHandle());
|
|---|
| 345 |
|
|---|
| 346 | aSecondaryTrack->SetParentID(aTrack.GetTrackID());
|
|---|
| 347 |
|
|---|
| 348 | aParticleChange.AddSecondary(aSecondaryTrack);
|
|---|
| 349 | }
|
|---|
| 350 |
|
|---|
| 351 | if (verboseLevel>0) {
|
|---|
| 352 | G4cout << "\n Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = "
|
|---|
| 353 | << aParticleChange.GetNumberOfSecondaries() << G4endl;
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | return pParticleChange;
|
|---|
| 357 | }
|
|---|
| 358 |
|
|---|
| 359 | // BuildThePhysicsTable for the Cerenkov process
|
|---|
| 360 | // ---------------------------------------------
|
|---|
| 361 | //
|
|---|
| 362 |
|
|---|
| 363 | void G4Cerenkov::BuildThePhysicsTable()
|
|---|
| 364 | {
|
|---|
| 365 | if (thePhysicsTable) return;
|
|---|
| 366 |
|
|---|
| 367 | const G4MaterialTable* theMaterialTable=
|
|---|
| 368 | G4Material::GetMaterialTable();
|
|---|
| 369 | G4int numOfMaterials = G4Material::GetNumberOfMaterials();
|
|---|
| 370 |
|
|---|
| 371 | // create new physics table
|
|---|
| 372 |
|
|---|
| 373 | thePhysicsTable = new G4PhysicsTable(numOfMaterials);
|
|---|
| 374 |
|
|---|
| 375 | // loop for materials
|
|---|
| 376 |
|
|---|
| 377 | for (G4int i=0 ; i < numOfMaterials; i++)
|
|---|
| 378 | {
|
|---|
| 379 | G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector =
|
|---|
| 380 | new G4PhysicsOrderedFreeVector();
|
|---|
| 381 |
|
|---|
| 382 | // Retrieve vector of refraction indices for the material
|
|---|
| 383 | // from the material's optical properties table
|
|---|
| 384 |
|
|---|
| 385 | G4Material* aMaterial = (*theMaterialTable)[i];
|
|---|
| 386 |
|
|---|
| 387 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 388 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 389 |
|
|---|
| 390 | if (aMaterialPropertiesTable) {
|
|---|
| 391 |
|
|---|
| 392 | G4MaterialPropertyVector* theRefractionIndexVector =
|
|---|
| 393 | aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 394 |
|
|---|
| 395 | if (theRefractionIndexVector) {
|
|---|
| 396 |
|
|---|
| 397 | // Retrieve the first refraction index in vector
|
|---|
| 398 | // of (photon energy, refraction index) pairs
|
|---|
| 399 |
|
|---|
| 400 | theRefractionIndexVector->ResetIterator();
|
|---|
| 401 | ++(*theRefractionIndexVector); // advance to 1st entry
|
|---|
| 402 |
|
|---|
| 403 | G4double currentRI = theRefractionIndexVector->
|
|---|
| 404 | GetProperty();
|
|---|
| 405 |
|
|---|
| 406 | if (currentRI > 1.0) {
|
|---|
| 407 |
|
|---|
| 408 | // Create first (photon energy, Cerenkov Integral)
|
|---|
| 409 | // pair
|
|---|
| 410 |
|
|---|
| 411 | G4double currentPM = theRefractionIndexVector->
|
|---|
| 412 | GetPhotonEnergy();
|
|---|
| 413 | G4double currentCAI = 0.0;
|
|---|
| 414 |
|
|---|
| 415 | aPhysicsOrderedFreeVector->
|
|---|
| 416 | InsertValues(currentPM , currentCAI);
|
|---|
| 417 |
|
|---|
| 418 | // Set previous values to current ones prior to loop
|
|---|
| 419 |
|
|---|
| 420 | G4double prevPM = currentPM;
|
|---|
| 421 | G4double prevCAI = currentCAI;
|
|---|
| 422 | G4double prevRI = currentRI;
|
|---|
| 423 |
|
|---|
| 424 | // loop over all (photon energy, refraction index)
|
|---|
| 425 | // pairs stored for this material
|
|---|
| 426 |
|
|---|
| 427 | while(++(*theRefractionIndexVector))
|
|---|
| 428 | {
|
|---|
| 429 | currentRI=theRefractionIndexVector->
|
|---|
| 430 | GetProperty();
|
|---|
| 431 |
|
|---|
| 432 | currentPM = theRefractionIndexVector->
|
|---|
| 433 | GetPhotonEnergy();
|
|---|
| 434 |
|
|---|
| 435 | currentCAI = 0.5*(1.0/(prevRI*prevRI) +
|
|---|
| 436 | 1.0/(currentRI*currentRI));
|
|---|
| 437 |
|
|---|
| 438 | currentCAI = prevCAI +
|
|---|
| 439 | (currentPM - prevPM) * currentCAI;
|
|---|
| 440 |
|
|---|
| 441 | aPhysicsOrderedFreeVector->
|
|---|
| 442 | InsertValues(currentPM, currentCAI);
|
|---|
| 443 |
|
|---|
| 444 | prevPM = currentPM;
|
|---|
| 445 | prevCAI = currentCAI;
|
|---|
| 446 | prevRI = currentRI;
|
|---|
| 447 | }
|
|---|
| 448 |
|
|---|
| 449 | }
|
|---|
| 450 | }
|
|---|
| 451 | }
|
|---|
| 452 |
|
|---|
| 453 | // The Cerenkov integral for a given material
|
|---|
| 454 | // will be inserted in thePhysicsTable
|
|---|
| 455 | // according to the position of the material in
|
|---|
| 456 | // the material table.
|
|---|
| 457 |
|
|---|
| 458 | thePhysicsTable->insertAt(i,aPhysicsOrderedFreeVector);
|
|---|
| 459 |
|
|---|
| 460 | }
|
|---|
| 461 | }
|
|---|
| 462 |
|
|---|
| 463 | // GetMeanFreePath
|
|---|
| 464 | // ---------------
|
|---|
| 465 | //
|
|---|
| 466 |
|
|---|
| 467 | G4double G4Cerenkov::GetMeanFreePath(const G4Track&,
|
|---|
| 468 | G4double,
|
|---|
| 469 | G4ForceCondition*)
|
|---|
| 470 | {
|
|---|
| 471 | return 1.;
|
|---|
| 472 | }
|
|---|
| 473 |
|
|---|
| 474 | G4double G4Cerenkov::PostStepGetPhysicalInteractionLength(
|
|---|
| 475 | const G4Track& aTrack,
|
|---|
| 476 | G4double,
|
|---|
| 477 | G4ForceCondition* condition)
|
|---|
| 478 | {
|
|---|
| 479 | *condition = NotForced;
|
|---|
| 480 | G4double StepLimit = DBL_MAX;
|
|---|
| 481 |
|
|---|
| 482 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 483 | const G4Material* aMaterial = aTrack.GetMaterial();
|
|---|
| 484 | const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple();
|
|---|
| 485 |
|
|---|
| 486 | const G4double kineticEnergy = aParticle->GetKineticEnergy();
|
|---|
| 487 | const G4ParticleDefinition* particleType = aParticle->GetDefinition();
|
|---|
| 488 | const G4double mass = particleType->GetPDGMass();
|
|---|
| 489 |
|
|---|
| 490 | // particle beta
|
|---|
| 491 | const G4double beta = aParticle->GetTotalMomentum() /
|
|---|
| 492 | aParticle->GetTotalEnergy();
|
|---|
| 493 | // particle gamma
|
|---|
| 494 | const G4double gamma = 1./std::sqrt(1.-beta*beta);
|
|---|
| 495 |
|
|---|
| 496 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 497 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 498 |
|
|---|
| 499 | const G4MaterialPropertyVector* Rindex = NULL;
|
|---|
| 500 |
|
|---|
| 501 | if (aMaterialPropertiesTable)
|
|---|
| 502 | Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 503 |
|
|---|
| 504 | G4double nMax;
|
|---|
| 505 | if (Rindex) {
|
|---|
| 506 | nMax = Rindex->GetMaxProperty();
|
|---|
| 507 | } else {
|
|---|
| 508 | return StepLimit;
|
|---|
| 509 | }
|
|---|
| 510 |
|
|---|
| 511 | G4double BetaMin = 1./nMax;
|
|---|
| 512 | if ( BetaMin >= 1. ) return StepLimit;
|
|---|
| 513 |
|
|---|
| 514 | G4double GammaMin = 1./std::sqrt(1.-BetaMin*BetaMin);
|
|---|
| 515 |
|
|---|
| 516 | if (gamma < GammaMin ) return StepLimit;
|
|---|
| 517 |
|
|---|
| 518 | G4double kinEmin = mass*(GammaMin-1.);
|
|---|
| 519 |
|
|---|
| 520 | G4double RangeMin = G4LossTableManager::Instance()->
|
|---|
| 521 | GetRange(particleType,
|
|---|
| 522 | kinEmin,
|
|---|
| 523 | couple);
|
|---|
| 524 | G4double Range = G4LossTableManager::Instance()->
|
|---|
| 525 | GetRange(particleType,
|
|---|
| 526 | kineticEnergy,
|
|---|
| 527 | couple);
|
|---|
| 528 |
|
|---|
| 529 | G4double Step = Range - RangeMin;
|
|---|
| 530 | if (Step < 1.*um ) return StepLimit;
|
|---|
| 531 |
|
|---|
| 532 | if (Step > 0. && Step < StepLimit) StepLimit = Step;
|
|---|
| 533 |
|
|---|
| 534 | // If user has defined an average maximum number of photons to
|
|---|
| 535 | // be generated in a Step, then calculate the Step length for
|
|---|
| 536 | // that number of photons.
|
|---|
| 537 |
|
|---|
| 538 | if (fMaxPhotons > 0) {
|
|---|
| 539 |
|
|---|
| 540 | // particle charge
|
|---|
| 541 | const G4double charge = aParticle->
|
|---|
| 542 | GetDefinition()->GetPDGCharge();
|
|---|
| 543 |
|
|---|
| 544 | G4double MeanNumberOfPhotons =
|
|---|
| 545 | GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
|
|---|
| 546 |
|
|---|
| 547 | G4double Step = 0.;
|
|---|
| 548 | if (MeanNumberOfPhotons > 0.0) Step = fMaxPhotons /
|
|---|
| 549 | MeanNumberOfPhotons;
|
|---|
| 550 |
|
|---|
| 551 | if (Step > 0. && Step < StepLimit) StepLimit = Step;
|
|---|
| 552 | }
|
|---|
| 553 |
|
|---|
| 554 | // If user has defined an maximum allowed change in beta per step
|
|---|
| 555 | if (fMaxBetaChange > 0.) {
|
|---|
| 556 |
|
|---|
| 557 | G4double dedx = G4LossTableManager::Instance()->
|
|---|
| 558 | GetDEDX(particleType,
|
|---|
| 559 | kineticEnergy,
|
|---|
| 560 | couple);
|
|---|
| 561 |
|
|---|
| 562 | G4double deltaGamma = gamma -
|
|---|
| 563 | 1./std::sqrt(1.-beta*beta*
|
|---|
| 564 | (1.-fMaxBetaChange)*
|
|---|
| 565 | (1.-fMaxBetaChange));
|
|---|
| 566 |
|
|---|
| 567 | G4double Step = mass * deltaGamma / dedx;
|
|---|
| 568 |
|
|---|
| 569 | if (Step > 0. && Step < StepLimit) StepLimit = Step;
|
|---|
| 570 |
|
|---|
| 571 | }
|
|---|
| 572 |
|
|---|
| 573 | *condition = StronglyForced;
|
|---|
| 574 | return StepLimit;
|
|---|
| 575 | }
|
|---|
| 576 |
|
|---|
| 577 | // GetAverageNumberOfPhotons
|
|---|
| 578 | // -------------------------
|
|---|
| 579 | // This routine computes the number of Cerenkov photons produced per
|
|---|
| 580 | // GEANT-unit (millimeter) in the current medium.
|
|---|
| 581 | // ^^^^^^^^^^
|
|---|
| 582 |
|
|---|
| 583 | G4double
|
|---|
| 584 | G4Cerenkov::GetAverageNumberOfPhotons(const G4double charge,
|
|---|
| 585 | const G4double beta,
|
|---|
| 586 | const G4Material* aMaterial,
|
|---|
| 587 | const G4MaterialPropertyVector* Rindex) const
|
|---|
| 588 | {
|
|---|
| 589 | const G4double Rfact = 369.81/(eV * cm);
|
|---|
| 590 |
|
|---|
| 591 | if(beta <= 0.0)return 0.0;
|
|---|
| 592 |
|
|---|
| 593 | G4double BetaInverse = 1./beta;
|
|---|
| 594 |
|
|---|
| 595 | // Vectors used in computation of Cerenkov Angle Integral:
|
|---|
| 596 | // - Refraction Indices for the current material
|
|---|
| 597 | // - new G4PhysicsOrderedFreeVector allocated to hold CAI's
|
|---|
| 598 |
|
|---|
| 599 | G4int materialIndex = aMaterial->GetIndex();
|
|---|
| 600 |
|
|---|
| 601 | // Retrieve the Cerenkov Angle Integrals for this material
|
|---|
| 602 |
|
|---|
| 603 | G4PhysicsOrderedFreeVector* CerenkovAngleIntegrals =
|
|---|
| 604 | (G4PhysicsOrderedFreeVector*)((*thePhysicsTable)(materialIndex));
|
|---|
| 605 |
|
|---|
| 606 | if(!(CerenkovAngleIntegrals->IsFilledVectorExist()))return 0.0;
|
|---|
| 607 |
|
|---|
| 608 | // Min and Max photon energies
|
|---|
| 609 | G4double Pmin = Rindex->GetMinPhotonEnergy();
|
|---|
| 610 | G4double Pmax = Rindex->GetMaxPhotonEnergy();
|
|---|
| 611 |
|
|---|
| 612 | // Min and Max Refraction Indices
|
|---|
| 613 | G4double nMin = Rindex->GetMinProperty();
|
|---|
| 614 | G4double nMax = Rindex->GetMaxProperty();
|
|---|
| 615 |
|
|---|
| 616 | // Max Cerenkov Angle Integral
|
|---|
| 617 | G4double CAImax = CerenkovAngleIntegrals->GetMaxValue();
|
|---|
| 618 |
|
|---|
| 619 | G4double dp, ge;
|
|---|
| 620 |
|
|---|
| 621 | // If n(Pmax) < 1/Beta -- no photons generated
|
|---|
| 622 |
|
|---|
| 623 | if (nMax < BetaInverse) {
|
|---|
| 624 | dp = 0;
|
|---|
| 625 | ge = 0;
|
|---|
| 626 | }
|
|---|
| 627 |
|
|---|
| 628 | // otherwise if n(Pmin) >= 1/Beta -- photons generated
|
|---|
| 629 |
|
|---|
| 630 | else if (nMin > BetaInverse) {
|
|---|
| 631 | dp = Pmax - Pmin;
|
|---|
| 632 | ge = CAImax;
|
|---|
| 633 | }
|
|---|
| 634 |
|
|---|
| 635 | // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Beta, then
|
|---|
| 636 | // we need to find a P such that the value of n(P) == 1/Beta.
|
|---|
| 637 | // Interpolation is performed by the GetPhotonEnergy() and
|
|---|
| 638 | // GetProperty() methods of the G4MaterialPropertiesTable and
|
|---|
| 639 | // the GetValue() method of G4PhysicsVector.
|
|---|
| 640 |
|
|---|
| 641 | else {
|
|---|
| 642 | Pmin = Rindex->GetPhotonEnergy(BetaInverse);
|
|---|
| 643 | dp = Pmax - Pmin;
|
|---|
| 644 |
|
|---|
| 645 | // need boolean for current implementation of G4PhysicsVector
|
|---|
| 646 | // ==> being phased out
|
|---|
| 647 | G4bool isOutRange;
|
|---|
| 648 | G4double CAImin = CerenkovAngleIntegrals->
|
|---|
| 649 | GetValue(Pmin, isOutRange);
|
|---|
| 650 | ge = CAImax - CAImin;
|
|---|
| 651 |
|
|---|
| 652 | if (verboseLevel>0) {
|
|---|
| 653 | G4cout << "CAImin = " << CAImin << G4endl;
|
|---|
| 654 | G4cout << "ge = " << ge << G4endl;
|
|---|
| 655 | }
|
|---|
| 656 | }
|
|---|
| 657 |
|
|---|
| 658 | // Calculate number of photons
|
|---|
| 659 | G4double NumPhotons = Rfact * charge/eplus * charge/eplus *
|
|---|
| 660 | (dp - ge * BetaInverse*BetaInverse);
|
|---|
| 661 |
|
|---|
| 662 | return NumPhotons;
|
|---|
| 663 | }
|
|---|