| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| [1337] | 27 | // $Id: G4Scintillation.cc,v 1.32 2010/06/16 15:34:15 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| [819] | 29 | //
|
|---|
| 30 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 31 | // Scintillation Light Class Implementation
|
|---|
| 32 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 33 | //
|
|---|
| 34 | // File: G4Scintillation.cc
|
|---|
| 35 | // Description: RestDiscrete Process - Generation of Scintillation Photons
|
|---|
| 36 | // Version: 1.0
|
|---|
| 37 | // Created: 1998-11-07
|
|---|
| 38 | // Author: Peter Gumplinger
|
|---|
| [1315] | 39 | // Updated: 2010-92-22 by Peter Gumplinger
|
|---|
| 40 | // > scintillation rise time included, thanks to
|
|---|
| 41 | // > Martin Goettlich/DESY
|
|---|
| 42 | // 2005-08-17 by Peter Gumplinger
|
|---|
| [819] | 43 | // > change variable name MeanNumPhotons -> MeanNumberOfPhotons
|
|---|
| 44 | // 2005-07-28 by Peter Gumplinger
|
|---|
| 45 | // > add G4ProcessType to constructor
|
|---|
| 46 | // 2004-08-05 by Peter Gumplinger
|
|---|
| 47 | // > changed StronglyForced back to Forced in GetMeanLifeTime
|
|---|
| 48 | // 2002-11-21 by Peter Gumplinger
|
|---|
| 49 | // > change to use G4Poisson for small MeanNumberOfPhotons
|
|---|
| 50 | // 2002-11-07 by Peter Gumplinger
|
|---|
| 51 | // > now allow for fast and slow scintillation component
|
|---|
| 52 | // 2002-11-05 by Peter Gumplinger
|
|---|
| 53 | // > now use scintillation constants from G4Material
|
|---|
| 54 | // 2002-05-09 by Peter Gumplinger
|
|---|
| 55 | // > use only the PostStepPoint location for the origin of
|
|---|
| 56 | // scintillation photons when energy is lost to the medium
|
|---|
| 57 | // by a neutral particle
|
|---|
| 58 | // 2000-09-18 by Peter Gumplinger
|
|---|
| 59 | // > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition();
|
|---|
| 60 | // aSecondaryTrack->SetTouchable(0);
|
|---|
| 61 | // 2001-09-17, migration of Materials to pure STL (mma)
|
|---|
| 62 | // 2003-06-03, V.Ivanchenko fix compilation warnings
|
|---|
| 63 | //
|
|---|
| 64 | // mail: gum@triumf.ca
|
|---|
| 65 | //
|
|---|
| 66 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 67 |
|
|---|
| 68 | #include "G4ios.hh"
|
|---|
| [961] | 69 | #include "G4EmProcessSubType.hh"
|
|---|
| 70 |
|
|---|
| [819] | 71 | #include "G4Scintillation.hh"
|
|---|
| 72 |
|
|---|
| 73 | /////////////////////////
|
|---|
| 74 | // Class Implementation
|
|---|
| 75 | /////////////////////////
|
|---|
| 76 |
|
|---|
| 77 | //////////////
|
|---|
| 78 | // Operators
|
|---|
| 79 | //////////////
|
|---|
| 80 |
|
|---|
| 81 | // G4Scintillation::operator=(const G4Scintillation &right)
|
|---|
| 82 | // {
|
|---|
| 83 | // }
|
|---|
| 84 |
|
|---|
| 85 | /////////////////
|
|---|
| 86 | // Constructors
|
|---|
| 87 | /////////////////
|
|---|
| 88 |
|
|---|
| 89 | G4Scintillation::G4Scintillation(const G4String& processName,
|
|---|
| 90 | G4ProcessType type)
|
|---|
| 91 | : G4VRestDiscreteProcess(processName, type)
|
|---|
| 92 | {
|
|---|
| [961] | 93 | SetProcessSubType(fScintillation);
|
|---|
| 94 |
|
|---|
| [819] | 95 | fTrackSecondariesFirst = false;
|
|---|
| [1315] | 96 | fFiniteRiseTime = false;
|
|---|
| [819] | 97 |
|
|---|
| 98 | YieldFactor = 1.0;
|
|---|
| 99 | ExcitationRatio = 1.0;
|
|---|
| 100 |
|
|---|
| 101 | theFastIntegralTable = NULL;
|
|---|
| 102 | theSlowIntegralTable = NULL;
|
|---|
| 103 |
|
|---|
| 104 | if (verboseLevel>0) {
|
|---|
| 105 | G4cout << GetProcessName() << " is created " << G4endl;
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | BuildThePhysicsTable();
|
|---|
| [961] | 109 |
|
|---|
| 110 | emSaturation = NULL;
|
|---|
| [819] | 111 | }
|
|---|
| 112 |
|
|---|
| 113 | ////////////////
|
|---|
| 114 | // Destructors
|
|---|
| 115 | ////////////////
|
|---|
| 116 |
|
|---|
| 117 | G4Scintillation::~G4Scintillation()
|
|---|
| 118 | {
|
|---|
| 119 | if (theFastIntegralTable != NULL) {
|
|---|
| 120 | theFastIntegralTable->clearAndDestroy();
|
|---|
| 121 | delete theFastIntegralTable;
|
|---|
| 122 | }
|
|---|
| 123 | if (theSlowIntegralTable != NULL) {
|
|---|
| 124 | theSlowIntegralTable->clearAndDestroy();
|
|---|
| 125 | delete theSlowIntegralTable;
|
|---|
| 126 | }
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | ////////////
|
|---|
| 130 | // Methods
|
|---|
| 131 | ////////////
|
|---|
| 132 |
|
|---|
| 133 | // AtRestDoIt
|
|---|
| 134 | // ----------
|
|---|
| 135 | //
|
|---|
| 136 | G4VParticleChange*
|
|---|
| 137 | G4Scintillation::AtRestDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 138 |
|
|---|
| 139 | // This routine simply calls the equivalent PostStepDoIt since all the
|
|---|
| 140 | // necessary information resides in aStep.GetTotalEnergyDeposit()
|
|---|
| 141 |
|
|---|
| 142 | {
|
|---|
| 143 | return G4Scintillation::PostStepDoIt(aTrack, aStep);
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | // PostStepDoIt
|
|---|
| 147 | // -------------
|
|---|
| 148 | //
|
|---|
| 149 | G4VParticleChange*
|
|---|
| 150 | G4Scintillation::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 151 |
|
|---|
| 152 | // This routine is called for each tracking step of a charged particle
|
|---|
| 153 | // in a scintillator. A Poisson/Gauss-distributed number of photons is
|
|---|
| 154 | // generated according to the scintillation yield formula, distributed
|
|---|
| 155 | // evenly along the track segment and uniformly into 4pi.
|
|---|
| 156 |
|
|---|
| 157 | {
|
|---|
| 158 | aParticleChange.Initialize(aTrack);
|
|---|
| 159 |
|
|---|
| 160 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 161 | const G4Material* aMaterial = aTrack.GetMaterial();
|
|---|
| 162 |
|
|---|
| 163 | G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint();
|
|---|
| 164 | G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
|
|---|
| 165 |
|
|---|
| 166 | G4ThreeVector x0 = pPreStepPoint->GetPosition();
|
|---|
| 167 | G4ThreeVector p0 = aStep.GetDeltaPosition().unit();
|
|---|
| 168 | G4double t0 = pPreStepPoint->GetGlobalTime();
|
|---|
| 169 |
|
|---|
| 170 | G4double TotalEnergyDeposit = aStep.GetTotalEnergyDeposit();
|
|---|
| 171 |
|
|---|
| 172 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 173 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 174 | if (!aMaterialPropertiesTable)
|
|---|
| 175 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 176 |
|
|---|
| 177 | const G4MaterialPropertyVector* Fast_Intensity =
|
|---|
| 178 | aMaterialPropertiesTable->GetProperty("FASTCOMPONENT");
|
|---|
| 179 | const G4MaterialPropertyVector* Slow_Intensity =
|
|---|
| 180 | aMaterialPropertiesTable->GetProperty("SLOWCOMPONENT");
|
|---|
| 181 |
|
|---|
| 182 | if (!Fast_Intensity && !Slow_Intensity )
|
|---|
| 183 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 184 |
|
|---|
| 185 | G4int nscnt = 1;
|
|---|
| 186 | if (Fast_Intensity && Slow_Intensity) nscnt = 2;
|
|---|
| 187 |
|
|---|
| 188 | G4double ScintillationYield = aMaterialPropertiesTable->
|
|---|
| 189 | GetConstProperty("SCINTILLATIONYIELD");
|
|---|
| [961] | 190 | ScintillationYield *= YieldFactor;
|
|---|
| 191 |
|
|---|
| [819] | 192 | G4double ResolutionScale = aMaterialPropertiesTable->
|
|---|
| 193 | GetConstProperty("RESOLUTIONSCALE");
|
|---|
| 194 |
|
|---|
| [961] | 195 | // Birks law saturation:
|
|---|
| [819] | 196 |
|
|---|
| [961] | 197 | G4double constBirks = 0.0;
|
|---|
| [819] | 198 |
|
|---|
| [961] | 199 | constBirks = aMaterial->GetIonisation()->GetBirksConstant();
|
|---|
| 200 |
|
|---|
| 201 | G4double MeanNumberOfPhotons;
|
|---|
| 202 |
|
|---|
| 203 | if (emSaturation) {
|
|---|
| 204 | MeanNumberOfPhotons = ScintillationYield*
|
|---|
| 205 | (emSaturation->VisibleEnergyDeposition(&aStep));
|
|---|
| 206 | } else {
|
|---|
| 207 | MeanNumberOfPhotons = ScintillationYield*TotalEnergyDeposit;
|
|---|
| 208 | }
|
|---|
| 209 |
|
|---|
| [819] | 210 | G4int NumPhotons;
|
|---|
| [961] | 211 |
|
|---|
| 212 | if (MeanNumberOfPhotons > 10.)
|
|---|
| 213 | {
|
|---|
| [1337] | 214 | G4double sigma = ResolutionScale * std::sqrt(MeanNumberOfPhotons);
|
|---|
| [819] | 215 | NumPhotons = G4int(G4RandGauss::shoot(MeanNumberOfPhotons,sigma)+0.5);
|
|---|
| 216 | }
|
|---|
| [961] | 217 | else
|
|---|
| 218 | {
|
|---|
| [819] | 219 | NumPhotons = G4int(G4Poisson(MeanNumberOfPhotons));
|
|---|
| 220 | }
|
|---|
| 221 |
|
|---|
| [961] | 222 | if (NumPhotons <= 0)
|
|---|
| 223 | {
|
|---|
| [819] | 224 | // return unchanged particle and no secondaries
|
|---|
| 225 |
|
|---|
| 226 | aParticleChange.SetNumberOfSecondaries(0);
|
|---|
| 227 |
|
|---|
| 228 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 229 | }
|
|---|
| 230 |
|
|---|
| 231 | ////////////////////////////////////////////////////////////////
|
|---|
| 232 |
|
|---|
| 233 | aParticleChange.SetNumberOfSecondaries(NumPhotons);
|
|---|
| 234 |
|
|---|
| 235 | if (fTrackSecondariesFirst) {
|
|---|
| 236 | if (aTrack.GetTrackStatus() == fAlive )
|
|---|
| 237 | aParticleChange.ProposeTrackStatus(fSuspend);
|
|---|
| 238 | }
|
|---|
| 239 |
|
|---|
| 240 | ////////////////////////////////////////////////////////////////
|
|---|
| 241 |
|
|---|
| 242 | G4int materialIndex = aMaterial->GetIndex();
|
|---|
| 243 |
|
|---|
| 244 | // Retrieve the Scintillation Integral for this material
|
|---|
| 245 | // new G4PhysicsOrderedFreeVector allocated to hold CII's
|
|---|
| 246 |
|
|---|
| 247 | G4int Num = NumPhotons;
|
|---|
| 248 |
|
|---|
| 249 | for (G4int scnt = 1; scnt <= nscnt; scnt++) {
|
|---|
| 250 |
|
|---|
| 251 | G4double ScintillationTime = 0.*ns;
|
|---|
| [1315] | 252 | G4double ScintillationRiseTime = 0.*ns;
|
|---|
| [819] | 253 | G4PhysicsOrderedFreeVector* ScintillationIntegral = NULL;
|
|---|
| 254 |
|
|---|
| 255 | if (scnt == 1) {
|
|---|
| 256 | if (nscnt == 1) {
|
|---|
| 257 | if(Fast_Intensity){
|
|---|
| 258 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 259 | GetConstProperty("FASTTIMECONSTANT");
|
|---|
| [1315] | 260 | if (fFiniteRiseTime) {
|
|---|
| 261 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 262 | GetConstProperty("FASTSCINTILLATIONRISETIME");
|
|---|
| 263 | }
|
|---|
| [819] | 264 | ScintillationIntegral =
|
|---|
| 265 | (G4PhysicsOrderedFreeVector*)((*theFastIntegralTable)(materialIndex));
|
|---|
| 266 | }
|
|---|
| 267 | if(Slow_Intensity){
|
|---|
| 268 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 269 | GetConstProperty("SLOWTIMECONSTANT");
|
|---|
| [1315] | 270 | if (fFiniteRiseTime) {
|
|---|
| 271 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 272 | GetConstProperty("SLOWSCINTILLATIONRISETIME"); }
|
|---|
| [819] | 273 | ScintillationIntegral =
|
|---|
| 274 | (G4PhysicsOrderedFreeVector*)((*theSlowIntegralTable)(materialIndex));
|
|---|
| 275 | }
|
|---|
| 276 | }
|
|---|
| 277 | else {
|
|---|
| 278 | G4double YieldRatio = aMaterialPropertiesTable->
|
|---|
| 279 | GetConstProperty("YIELDRATIO");
|
|---|
| 280 | if ( ExcitationRatio == 1.0 ) {
|
|---|
| [1337] | 281 | Num = G4int (std::min(YieldRatio,1.0) * NumPhotons);
|
|---|
| [819] | 282 | }
|
|---|
| 283 | else {
|
|---|
| [1337] | 284 | Num = G4int (std::min(ExcitationRatio,1.0) * NumPhotons);
|
|---|
| [819] | 285 | }
|
|---|
| 286 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 287 | GetConstProperty("FASTTIMECONSTANT");
|
|---|
| [1315] | 288 | if (fFiniteRiseTime) {
|
|---|
| 289 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 290 | GetConstProperty("FASTSCINTILLATIONRISETIME");
|
|---|
| 291 | }
|
|---|
| [819] | 292 | ScintillationIntegral =
|
|---|
| 293 | (G4PhysicsOrderedFreeVector*)((*theFastIntegralTable)(materialIndex));
|
|---|
| 294 | }
|
|---|
| 295 | }
|
|---|
| 296 | else {
|
|---|
| 297 | Num = NumPhotons - Num;
|
|---|
| 298 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 299 | GetConstProperty("SLOWTIMECONSTANT");
|
|---|
| [1315] | 300 | if (fFiniteRiseTime) {
|
|---|
| 301 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 302 | GetConstProperty("SLOWSCINTILLATIONRISETIME");
|
|---|
| 303 | }
|
|---|
| [819] | 304 | ScintillationIntegral =
|
|---|
| 305 | (G4PhysicsOrderedFreeVector*)((*theSlowIntegralTable)(materialIndex));
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 | if (!ScintillationIntegral) continue;
|
|---|
| 309 |
|
|---|
| 310 | // Max Scintillation Integral
|
|---|
| 311 |
|
|---|
| 312 | G4double CIImax = ScintillationIntegral->GetMaxValue();
|
|---|
| 313 |
|
|---|
| 314 | for (G4int i = 0; i < Num; i++) {
|
|---|
| 315 |
|
|---|
| [961] | 316 | // Determine photon energy
|
|---|
| [819] | 317 |
|
|---|
| 318 | G4double CIIvalue = G4UniformRand()*CIImax;
|
|---|
| [961] | 319 | G4double sampledEnergy =
|
|---|
| [819] | 320 | ScintillationIntegral->GetEnergy(CIIvalue);
|
|---|
| 321 |
|
|---|
| 322 | if (verboseLevel>1) {
|
|---|
| [961] | 323 | G4cout << "sampledEnergy = " << sampledEnergy << G4endl;
|
|---|
| [819] | 324 | G4cout << "CIIvalue = " << CIIvalue << G4endl;
|
|---|
| 325 | }
|
|---|
| 326 |
|
|---|
| 327 | // Generate random photon direction
|
|---|
| 328 |
|
|---|
| 329 | G4double cost = 1. - 2.*G4UniformRand();
|
|---|
| [1337] | 330 | G4double sint = std::sqrt((1.-cost)*(1.+cost));
|
|---|
| [819] | 331 |
|
|---|
| 332 | G4double phi = twopi*G4UniformRand();
|
|---|
| [1337] | 333 | G4double sinp = std::sin(phi);
|
|---|
| 334 | G4double cosp = std::cos(phi);
|
|---|
| [819] | 335 |
|
|---|
| 336 | G4double px = sint*cosp;
|
|---|
| 337 | G4double py = sint*sinp;
|
|---|
| 338 | G4double pz = cost;
|
|---|
| 339 |
|
|---|
| 340 | // Create photon momentum direction vector
|
|---|
| 341 |
|
|---|
| 342 | G4ParticleMomentum photonMomentum(px, py, pz);
|
|---|
| 343 |
|
|---|
| 344 | // Determine polarization of new photon
|
|---|
| 345 |
|
|---|
| 346 | G4double sx = cost*cosp;
|
|---|
| 347 | G4double sy = cost*sinp;
|
|---|
| 348 | G4double sz = -sint;
|
|---|
| 349 |
|
|---|
| 350 | G4ThreeVector photonPolarization(sx, sy, sz);
|
|---|
| 351 |
|
|---|
| 352 | G4ThreeVector perp = photonMomentum.cross(photonPolarization);
|
|---|
| 353 |
|
|---|
| 354 | phi = twopi*G4UniformRand();
|
|---|
| [1337] | 355 | sinp = std::sin(phi);
|
|---|
| 356 | cosp = std::cos(phi);
|
|---|
| [819] | 357 |
|
|---|
| 358 | photonPolarization = cosp * photonPolarization + sinp * perp;
|
|---|
| 359 |
|
|---|
| 360 | photonPolarization = photonPolarization.unit();
|
|---|
| 361 |
|
|---|
| 362 | // Generate a new photon:
|
|---|
| 363 |
|
|---|
| 364 | G4DynamicParticle* aScintillationPhoton =
|
|---|
| 365 | new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(),
|
|---|
| 366 | photonMomentum);
|
|---|
| 367 | aScintillationPhoton->SetPolarization
|
|---|
| 368 | (photonPolarization.x(),
|
|---|
| 369 | photonPolarization.y(),
|
|---|
| 370 | photonPolarization.z());
|
|---|
| 371 |
|
|---|
| [961] | 372 | aScintillationPhoton->SetKineticEnergy(sampledEnergy);
|
|---|
| [819] | 373 |
|
|---|
| 374 | // Generate new G4Track object:
|
|---|
| 375 |
|
|---|
| 376 | G4double rand;
|
|---|
| 377 |
|
|---|
| 378 | if (aParticle->GetDefinition()->GetPDGCharge() != 0) {
|
|---|
| 379 | rand = G4UniformRand();
|
|---|
| 380 | } else {
|
|---|
| 381 | rand = 1.0;
|
|---|
| 382 | }
|
|---|
| 383 |
|
|---|
| 384 | G4double delta = rand * aStep.GetStepLength();
|
|---|
| 385 | G4double deltaTime = delta /
|
|---|
| 386 | ((pPreStepPoint->GetVelocity()+
|
|---|
| 387 | pPostStepPoint->GetVelocity())/2.);
|
|---|
| 388 |
|
|---|
| [1315] | 389 | // emission time distribution
|
|---|
| 390 | if (ScintillationRiseTime==0.0) {
|
|---|
| 391 | deltaTime = deltaTime -
|
|---|
| [1337] | 392 | ScintillationTime * std::log( G4UniformRand() );
|
|---|
| [1315] | 393 | } else {
|
|---|
| 394 | deltaTime = deltaTime +
|
|---|
| 395 | sample_time(ScintillationRiseTime, ScintillationTime);
|
|---|
| 396 | }
|
|---|
| [819] | 397 |
|
|---|
| 398 | G4double aSecondaryTime = t0 + deltaTime;
|
|---|
| 399 |
|
|---|
| 400 | G4ThreeVector aSecondaryPosition =
|
|---|
| 401 | x0 + rand * aStep.GetDeltaPosition();
|
|---|
| 402 |
|
|---|
| 403 | G4Track* aSecondaryTrack =
|
|---|
| 404 | new G4Track(aScintillationPhoton,aSecondaryTime,aSecondaryPosition);
|
|---|
| 405 |
|
|---|
| [961] | 406 | aSecondaryTrack->SetTouchableHandle(
|
|---|
| 407 | aStep.GetPreStepPoint()->GetTouchableHandle());
|
|---|
| 408 | // aSecondaryTrack->SetTouchableHandle((G4VTouchable*)0);
|
|---|
| [819] | 409 |
|
|---|
| 410 | aSecondaryTrack->SetParentID(aTrack.GetTrackID());
|
|---|
| 411 |
|
|---|
| 412 | aParticleChange.AddSecondary(aSecondaryTrack);
|
|---|
| 413 |
|
|---|
| 414 | }
|
|---|
| 415 | }
|
|---|
| 416 |
|
|---|
| 417 | if (verboseLevel>0) {
|
|---|
| 418 | G4cout << "\n Exiting from G4Scintillation::DoIt -- NumberOfSecondaries = "
|
|---|
| 419 | << aParticleChange.GetNumberOfSecondaries() << G4endl;
|
|---|
| 420 | }
|
|---|
| 421 |
|
|---|
| 422 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 423 | }
|
|---|
| 424 |
|
|---|
| 425 | // BuildThePhysicsTable for the scintillation process
|
|---|
| 426 | // --------------------------------------------------
|
|---|
| 427 | //
|
|---|
| 428 |
|
|---|
| 429 | void G4Scintillation::BuildThePhysicsTable()
|
|---|
| 430 | {
|
|---|
| 431 | if (theFastIntegralTable && theSlowIntegralTable) return;
|
|---|
| 432 |
|
|---|
| 433 | const G4MaterialTable* theMaterialTable =
|
|---|
| 434 | G4Material::GetMaterialTable();
|
|---|
| 435 | G4int numOfMaterials = G4Material::GetNumberOfMaterials();
|
|---|
| 436 |
|
|---|
| 437 | // create new physics table
|
|---|
| 438 |
|
|---|
| 439 | if(!theFastIntegralTable)theFastIntegralTable = new G4PhysicsTable(numOfMaterials);
|
|---|
| 440 | if(!theSlowIntegralTable)theSlowIntegralTable = new G4PhysicsTable(numOfMaterials);
|
|---|
| 441 |
|
|---|
| 442 | // loop for materials
|
|---|
| 443 |
|
|---|
| 444 | for (G4int i=0 ; i < numOfMaterials; i++)
|
|---|
| 445 | {
|
|---|
| 446 | G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector =
|
|---|
| 447 | new G4PhysicsOrderedFreeVector();
|
|---|
| 448 | G4PhysicsOrderedFreeVector* bPhysicsOrderedFreeVector =
|
|---|
| 449 | new G4PhysicsOrderedFreeVector();
|
|---|
| 450 |
|
|---|
| 451 | // Retrieve vector of scintillation wavelength intensity for
|
|---|
| 452 | // the material from the material's optical properties table.
|
|---|
| 453 |
|
|---|
| 454 | G4Material* aMaterial = (*theMaterialTable)[i];
|
|---|
| 455 |
|
|---|
| 456 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 457 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 458 |
|
|---|
| 459 | if (aMaterialPropertiesTable) {
|
|---|
| 460 |
|
|---|
| 461 | G4MaterialPropertyVector* theFastLightVector =
|
|---|
| 462 | aMaterialPropertiesTable->GetProperty("FASTCOMPONENT");
|
|---|
| 463 |
|
|---|
| 464 | if (theFastLightVector) {
|
|---|
| 465 |
|
|---|
| 466 | // Retrieve the first intensity point in vector
|
|---|
| [961] | 467 | // of (photon energy, intensity) pairs
|
|---|
| [819] | 468 |
|
|---|
| 469 | theFastLightVector->ResetIterator();
|
|---|
| 470 | ++(*theFastLightVector); // advance to 1st entry
|
|---|
| 471 |
|
|---|
| 472 | G4double currentIN = theFastLightVector->
|
|---|
| 473 | GetProperty();
|
|---|
| 474 |
|
|---|
| 475 | if (currentIN >= 0.0) {
|
|---|
| 476 |
|
|---|
| [961] | 477 | // Create first (photon energy, Scintillation
|
|---|
| [819] | 478 | // Integral pair
|
|---|
| 479 |
|
|---|
| 480 | G4double currentPM = theFastLightVector->
|
|---|
| [961] | 481 | GetPhotonEnergy();
|
|---|
| [819] | 482 |
|
|---|
| 483 | G4double currentCII = 0.0;
|
|---|
| 484 |
|
|---|
| 485 | aPhysicsOrderedFreeVector->
|
|---|
| 486 | InsertValues(currentPM , currentCII);
|
|---|
| 487 |
|
|---|
| 488 | // Set previous values to current ones prior to loop
|
|---|
| 489 |
|
|---|
| 490 | G4double prevPM = currentPM;
|
|---|
| 491 | G4double prevCII = currentCII;
|
|---|
| 492 | G4double prevIN = currentIN;
|
|---|
| 493 |
|
|---|
| [961] | 494 | // loop over all (photon energy, intensity)
|
|---|
| [819] | 495 | // pairs stored for this material
|
|---|
| 496 |
|
|---|
| 497 | while(++(*theFastLightVector))
|
|---|
| 498 | {
|
|---|
| 499 | currentPM = theFastLightVector->
|
|---|
| [961] | 500 | GetPhotonEnergy();
|
|---|
| [819] | 501 |
|
|---|
| 502 | currentIN=theFastLightVector->
|
|---|
| 503 | GetProperty();
|
|---|
| 504 |
|
|---|
| 505 | currentCII = 0.5 * (prevIN + currentIN);
|
|---|
| 506 |
|
|---|
| 507 | currentCII = prevCII +
|
|---|
| 508 | (currentPM - prevPM) * currentCII;
|
|---|
| 509 |
|
|---|
| 510 | aPhysicsOrderedFreeVector->
|
|---|
| 511 | InsertValues(currentPM, currentCII);
|
|---|
| 512 |
|
|---|
| 513 | prevPM = currentPM;
|
|---|
| 514 | prevCII = currentCII;
|
|---|
| 515 | prevIN = currentIN;
|
|---|
| 516 | }
|
|---|
| 517 |
|
|---|
| 518 | }
|
|---|
| 519 | }
|
|---|
| 520 |
|
|---|
| 521 | G4MaterialPropertyVector* theSlowLightVector =
|
|---|
| 522 | aMaterialPropertiesTable->GetProperty("SLOWCOMPONENT");
|
|---|
| 523 |
|
|---|
| 524 | if (theSlowLightVector) {
|
|---|
| 525 |
|
|---|
| 526 | // Retrieve the first intensity point in vector
|
|---|
| [961] | 527 | // of (photon energy, intensity) pairs
|
|---|
| [819] | 528 |
|
|---|
| 529 | theSlowLightVector->ResetIterator();
|
|---|
| 530 | ++(*theSlowLightVector); // advance to 1st entry
|
|---|
| 531 |
|
|---|
| 532 | G4double currentIN = theSlowLightVector->
|
|---|
| 533 | GetProperty();
|
|---|
| 534 |
|
|---|
| 535 | if (currentIN >= 0.0) {
|
|---|
| 536 |
|
|---|
| [961] | 537 | // Create first (photon energy, Scintillation
|
|---|
| [819] | 538 | // Integral pair
|
|---|
| 539 |
|
|---|
| 540 | G4double currentPM = theSlowLightVector->
|
|---|
| [961] | 541 | GetPhotonEnergy();
|
|---|
| [819] | 542 |
|
|---|
| 543 | G4double currentCII = 0.0;
|
|---|
| 544 |
|
|---|
| 545 | bPhysicsOrderedFreeVector->
|
|---|
| 546 | InsertValues(currentPM , currentCII);
|
|---|
| 547 |
|
|---|
| 548 | // Set previous values to current ones prior to loop
|
|---|
| 549 |
|
|---|
| 550 | G4double prevPM = currentPM;
|
|---|
| 551 | G4double prevCII = currentCII;
|
|---|
| 552 | G4double prevIN = currentIN;
|
|---|
| 553 |
|
|---|
| [961] | 554 | // loop over all (photon energy, intensity)
|
|---|
| [819] | 555 | // pairs stored for this material
|
|---|
| 556 |
|
|---|
| 557 | while(++(*theSlowLightVector))
|
|---|
| 558 | {
|
|---|
| 559 | currentPM = theSlowLightVector->
|
|---|
| [961] | 560 | GetPhotonEnergy();
|
|---|
| [819] | 561 |
|
|---|
| 562 | currentIN=theSlowLightVector->
|
|---|
| 563 | GetProperty();
|
|---|
| 564 |
|
|---|
| 565 | currentCII = 0.5 * (prevIN + currentIN);
|
|---|
| 566 |
|
|---|
| 567 | currentCII = prevCII +
|
|---|
| 568 | (currentPM - prevPM) * currentCII;
|
|---|
| 569 |
|
|---|
| 570 | bPhysicsOrderedFreeVector->
|
|---|
| 571 | InsertValues(currentPM, currentCII);
|
|---|
| 572 |
|
|---|
| 573 | prevPM = currentPM;
|
|---|
| 574 | prevCII = currentCII;
|
|---|
| 575 | prevIN = currentIN;
|
|---|
| 576 | }
|
|---|
| 577 |
|
|---|
| 578 | }
|
|---|
| 579 | }
|
|---|
| 580 | }
|
|---|
| 581 |
|
|---|
| 582 | // The scintillation integral(s) for a given material
|
|---|
| 583 | // will be inserted in the table(s) according to the
|
|---|
| 584 | // position of the material in the material table.
|
|---|
| 585 |
|
|---|
| 586 | theFastIntegralTable->insertAt(i,aPhysicsOrderedFreeVector);
|
|---|
| 587 | theSlowIntegralTable->insertAt(i,bPhysicsOrderedFreeVector);
|
|---|
| 588 |
|
|---|
| 589 | }
|
|---|
| 590 | }
|
|---|
| 591 |
|
|---|
| 592 | // GetMeanFreePath
|
|---|
| 593 | // ---------------
|
|---|
| 594 | //
|
|---|
| 595 |
|
|---|
| 596 | G4double G4Scintillation::GetMeanFreePath(const G4Track&,
|
|---|
| 597 | G4double ,
|
|---|
| 598 | G4ForceCondition* condition)
|
|---|
| 599 | {
|
|---|
| 600 | *condition = StronglyForced;
|
|---|
| 601 |
|
|---|
| 602 | return DBL_MAX;
|
|---|
| 603 |
|
|---|
| 604 | }
|
|---|
| 605 |
|
|---|
| 606 | // GetMeanLifeTime
|
|---|
| 607 | // ---------------
|
|---|
| 608 | //
|
|---|
| 609 |
|
|---|
| 610 | G4double G4Scintillation::GetMeanLifeTime(const G4Track&,
|
|---|
| 611 | G4ForceCondition* condition)
|
|---|
| 612 | {
|
|---|
| 613 | *condition = Forced;
|
|---|
| 614 |
|
|---|
| 615 | return DBL_MAX;
|
|---|
| 616 |
|
|---|
| 617 | }
|
|---|
| [1315] | 618 |
|
|---|
| 619 | G4double G4Scintillation::sample_time(G4double tau1, G4double tau2)
|
|---|
| 620 | {
|
|---|
| 621 | // tau1: rise time and tau2: decay time
|
|---|
| 622 |
|
|---|
| 623 | while(1) {
|
|---|
| 624 | // two random numbers
|
|---|
| 625 | G4double ran1 = G4UniformRand();
|
|---|
| 626 | G4double ran2 = G4UniformRand();
|
|---|
| 627 | //
|
|---|
| 628 | // exponential distribution as envelope function: very efficient
|
|---|
| 629 | //
|
|---|
| 630 | G4double d = (tau1+tau2)/tau2;
|
|---|
| 631 | // make sure the envelope function is
|
|---|
| 632 | // always larger than the bi-exponential
|
|---|
| [1337] | 633 | G4double t = -1.0*tau2*std::log(1-ran1);
|
|---|
| [1315] | 634 | G4double g = d*single_exp(t,tau2);
|
|---|
| 635 | if (ran2 <= bi_exp(t,tau1,tau2)/g) return t;
|
|---|
| 636 | }
|
|---|
| 637 | return -1.0;
|
|---|
| 638 | }
|
|---|