| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Scintillation.cc,v 1.38 2010/12/15 07:39:26 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-ref-00 $
|
|---|
| 29 | //
|
|---|
| 30 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 31 | // Scintillation Light Class Implementation
|
|---|
| 32 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 33 | //
|
|---|
| 34 | // File: G4Scintillation.cc
|
|---|
| 35 | // Description: RestDiscrete Process - Generation of Scintillation Photons
|
|---|
| 36 | // Version: 1.0
|
|---|
| 37 | // Created: 1998-11-07
|
|---|
| 38 | // Author: Peter Gumplinger
|
|---|
| 39 | // Updated: 2010-10-20 Allow the scintillation yield to be a function
|
|---|
| 40 | // of energy deposited by particle type
|
|---|
| 41 | // Thanks to Zach Hartwig (Department of Nuclear
|
|---|
| 42 | // Science and Engineeering - MIT)
|
|---|
| 43 | // 2010-09-22 by Peter Gumplinger
|
|---|
| 44 | // > scintillation rise time included, thanks to
|
|---|
| 45 | // > Martin Goettlich/DESY
|
|---|
| 46 | // 2005-08-17 by Peter Gumplinger
|
|---|
| 47 | // > change variable name MeanNumPhotons -> MeanNumberOfPhotons
|
|---|
| 48 | // 2005-07-28 by Peter Gumplinger
|
|---|
| 49 | // > add G4ProcessType to constructor
|
|---|
| 50 | // 2004-08-05 by Peter Gumplinger
|
|---|
| 51 | // > changed StronglyForced back to Forced in GetMeanLifeTime
|
|---|
| 52 | // 2002-11-21 by Peter Gumplinger
|
|---|
| 53 | // > change to use G4Poisson for small MeanNumberOfPhotons
|
|---|
| 54 | // 2002-11-07 by Peter Gumplinger
|
|---|
| 55 | // > now allow for fast and slow scintillation component
|
|---|
| 56 | // 2002-11-05 by Peter Gumplinger
|
|---|
| 57 | // > now use scintillation constants from G4Material
|
|---|
| 58 | // 2002-05-09 by Peter Gumplinger
|
|---|
| 59 | // > use only the PostStepPoint location for the origin of
|
|---|
| 60 | // scintillation photons when energy is lost to the medium
|
|---|
| 61 | // by a neutral particle
|
|---|
| 62 | // 2000-09-18 by Peter Gumplinger
|
|---|
| 63 | // > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition();
|
|---|
| 64 | // aSecondaryTrack->SetTouchable(0);
|
|---|
| 65 | // 2001-09-17, migration of Materials to pure STL (mma)
|
|---|
| 66 | // 2003-06-03, V.Ivanchenko fix compilation warnings
|
|---|
| 67 | //
|
|---|
| 68 | // mail: gum@triumf.ca
|
|---|
| 69 | //
|
|---|
| 70 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 71 |
|
|---|
| 72 | #include "G4ios.hh"
|
|---|
| 73 | #include "G4ParticleTypes.hh"
|
|---|
| 74 | #include "G4EmProcessSubType.hh"
|
|---|
| 75 |
|
|---|
| 76 | #include "G4Scintillation.hh"
|
|---|
| 77 |
|
|---|
| 78 | /////////////////////////
|
|---|
| 79 | // Class Implementation
|
|---|
| 80 | /////////////////////////
|
|---|
| 81 |
|
|---|
| 82 | //////////////
|
|---|
| 83 | // Operators
|
|---|
| 84 | //////////////
|
|---|
| 85 |
|
|---|
| 86 | // G4Scintillation::operator=(const G4Scintillation &right)
|
|---|
| 87 | // {
|
|---|
| 88 | // }
|
|---|
| 89 |
|
|---|
| 90 | /////////////////
|
|---|
| 91 | // Constructors
|
|---|
| 92 | /////////////////
|
|---|
| 93 |
|
|---|
| 94 | G4Scintillation::G4Scintillation(const G4String& processName,
|
|---|
| 95 | G4ProcessType type)
|
|---|
| 96 | : G4VRestDiscreteProcess(processName, type)
|
|---|
| 97 | {
|
|---|
| 98 | SetProcessSubType(fScintillation);
|
|---|
| 99 |
|
|---|
| 100 | fTrackSecondariesFirst = false;
|
|---|
| 101 | fFiniteRiseTime = false;
|
|---|
| 102 |
|
|---|
| 103 | YieldFactor = 1.0;
|
|---|
| 104 | ExcitationRatio = 1.0;
|
|---|
| 105 |
|
|---|
| 106 | scintillationByParticleType = false;
|
|---|
| 107 |
|
|---|
| 108 | theFastIntegralTable = NULL;
|
|---|
| 109 | theSlowIntegralTable = NULL;
|
|---|
| 110 |
|
|---|
| 111 | if (verboseLevel>0) {
|
|---|
| 112 | G4cout << GetProcessName() << " is created " << G4endl;
|
|---|
| 113 | }
|
|---|
| 114 |
|
|---|
| 115 | BuildThePhysicsTable();
|
|---|
| 116 |
|
|---|
| 117 | emSaturation = NULL;
|
|---|
| 118 | }
|
|---|
| 119 |
|
|---|
| 120 | ////////////////
|
|---|
| 121 | // Destructors
|
|---|
| 122 | ////////////////
|
|---|
| 123 |
|
|---|
| 124 | G4Scintillation::~G4Scintillation()
|
|---|
| 125 | {
|
|---|
| 126 | if (theFastIntegralTable != NULL) {
|
|---|
| 127 | theFastIntegralTable->clearAndDestroy();
|
|---|
| 128 | delete theFastIntegralTable;
|
|---|
| 129 | }
|
|---|
| 130 | if (theSlowIntegralTable != NULL) {
|
|---|
| 131 | theSlowIntegralTable->clearAndDestroy();
|
|---|
| 132 | delete theSlowIntegralTable;
|
|---|
| 133 | }
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 | ////////////
|
|---|
| 137 | // Methods
|
|---|
| 138 | ////////////
|
|---|
| 139 |
|
|---|
| 140 | // AtRestDoIt
|
|---|
| 141 | // ----------
|
|---|
| 142 | //
|
|---|
| 143 | G4VParticleChange*
|
|---|
| 144 | G4Scintillation::AtRestDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 145 |
|
|---|
| 146 | // This routine simply calls the equivalent PostStepDoIt since all the
|
|---|
| 147 | // necessary information resides in aStep.GetTotalEnergyDeposit()
|
|---|
| 148 |
|
|---|
| 149 | {
|
|---|
| 150 | return G4Scintillation::PostStepDoIt(aTrack, aStep);
|
|---|
| 151 | }
|
|---|
| 152 |
|
|---|
| 153 | // PostStepDoIt
|
|---|
| 154 | // -------------
|
|---|
| 155 | //
|
|---|
| 156 | G4VParticleChange*
|
|---|
| 157 | G4Scintillation::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 158 |
|
|---|
| 159 | // This routine is called for each tracking step of a charged particle
|
|---|
| 160 | // in a scintillator. A Poisson/Gauss-distributed number of photons is
|
|---|
| 161 | // generated according to the scintillation yield formula, distributed
|
|---|
| 162 | // evenly along the track segment and uniformly into 4pi.
|
|---|
| 163 |
|
|---|
| 164 | {
|
|---|
| 165 | aParticleChange.Initialize(aTrack);
|
|---|
| 166 |
|
|---|
| 167 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 168 | const G4Material* aMaterial = aTrack.GetMaterial();
|
|---|
| 169 |
|
|---|
| 170 | G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint();
|
|---|
| 171 | G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
|
|---|
| 172 |
|
|---|
| 173 | G4ThreeVector x0 = pPreStepPoint->GetPosition();
|
|---|
| 174 | G4ThreeVector p0 = aStep.GetDeltaPosition().unit();
|
|---|
| 175 | G4double t0 = pPreStepPoint->GetGlobalTime();
|
|---|
| 176 |
|
|---|
| 177 | G4double TotalEnergyDeposit = aStep.GetTotalEnergyDeposit();
|
|---|
| 178 |
|
|---|
| 179 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 180 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 181 | if (!aMaterialPropertiesTable)
|
|---|
| 182 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 183 |
|
|---|
| 184 | const G4MaterialPropertyVector* Fast_Intensity =
|
|---|
| 185 | aMaterialPropertiesTable->GetProperty("FASTCOMPONENT");
|
|---|
| 186 | const G4MaterialPropertyVector* Slow_Intensity =
|
|---|
| 187 | aMaterialPropertiesTable->GetProperty("SLOWCOMPONENT");
|
|---|
| 188 |
|
|---|
| 189 | if (!Fast_Intensity && !Slow_Intensity )
|
|---|
| 190 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 191 |
|
|---|
| 192 | G4int nscnt = 1;
|
|---|
| 193 | if (Fast_Intensity && Slow_Intensity) nscnt = 2;
|
|---|
| 194 |
|
|---|
| 195 | G4double ScintillationYield = 0.;
|
|---|
| 196 |
|
|---|
| 197 | if (scintillationByParticleType) {
|
|---|
| 198 | // The scintillation response is a function of the energy
|
|---|
| 199 | // deposited by particle types.
|
|---|
| 200 |
|
|---|
| 201 | // Get the definition of the current particle
|
|---|
| 202 | G4ParticleDefinition *pDef = aParticle->GetDefinition();
|
|---|
| 203 | const G4MaterialPropertyVector *Scint_Yield_Vector = NULL;
|
|---|
| 204 |
|
|---|
| 205 | // Obtain the G4MaterialPropertyVectory containing the
|
|---|
| 206 | // scintillation light yield as a function of the deposited
|
|---|
| 207 | // energy for the current particle type
|
|---|
| 208 |
|
|---|
| 209 | // Protons
|
|---|
| 210 | if(pDef==G4Proton::ProtonDefinition())
|
|---|
| 211 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 212 | GetProperty("PROTONSCINTILLATIONYIELD");
|
|---|
| 213 |
|
|---|
| 214 | // Deuterons
|
|---|
| 215 | else if(pDef==G4Deuteron::DeuteronDefinition())
|
|---|
| 216 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 217 | GetProperty("DEUTERONSCINTILLATIONYIELD");
|
|---|
| 218 |
|
|---|
| 219 | // Tritons
|
|---|
| 220 | else if(pDef==G4Triton::TritonDefinition())
|
|---|
| 221 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 222 | GetProperty("TRITONSCINTILLATIONYIELD");
|
|---|
| 223 |
|
|---|
| 224 | // Alphas
|
|---|
| 225 | else if(pDef==G4Alpha::AlphaDefinition())
|
|---|
| 226 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 227 | GetProperty("ALPHASCINTILLATIONYIELD");
|
|---|
| 228 |
|
|---|
| 229 | // Ions (particles derived from G4VIon and G4Ions)
|
|---|
| 230 | // and recoil ions below tracking cut from neutrons after hElastic
|
|---|
| 231 | else if(pDef->GetParticleType()== "nucleus" ||
|
|---|
| 232 | pDef==G4Neutron::NeutronDefinition())
|
|---|
| 233 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 234 | GetProperty("IONSCINTILLATIONYIELD");
|
|---|
| 235 |
|
|---|
| 236 | // Electrons (must also account for shell-binding energy
|
|---|
| 237 | // attributed to gamma from standard PhotoElectricEffect)
|
|---|
| 238 | else if(pDef==G4Electron::ElectronDefinition() ||
|
|---|
| 239 | pDef==G4Gamma::GammaDefinition())
|
|---|
| 240 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 241 | GetProperty("ELECTRONSCINTILLATIONYIELD");
|
|---|
| 242 |
|
|---|
| 243 | // Default for particles not enumerated/listed above
|
|---|
| 244 | else
|
|---|
| 245 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 246 | GetProperty("ELECTRONSCINTILLATIONYIELD");
|
|---|
| 247 |
|
|---|
| 248 | // If the user has not specified yields for (p,d,t,a,carbon)
|
|---|
| 249 | // then these unspecified particles will default to the
|
|---|
| 250 | // electron's scintillation yield
|
|---|
| 251 | if(!Scint_Yield_Vector){
|
|---|
| 252 | Scint_Yield_Vector = aMaterialPropertiesTable->
|
|---|
| 253 | GetProperty("ELECTRONSCINTILLATIONYIELD");
|
|---|
| 254 | }
|
|---|
| 255 |
|
|---|
| 256 | // Throw an exception if no scintillation yield is found
|
|---|
| 257 | if (!Scint_Yield_Vector) {
|
|---|
| 258 | G4cerr << "\nG4Scintillation::PostStepDoIt(): "
|
|---|
| 259 | << "Request for scintillation yield for energy deposit and particle type without correct entry in MaterialPropertiesTable\n"
|
|---|
| 260 | << "ScintillationByParticleType requires at minimum that ELECTRONSCINTILLATIONYIELD is set by the user\n"
|
|---|
| 261 | << G4endl;
|
|---|
| 262 | G4Exception("G4Scintillation::PostStepDoIt",
|
|---|
| 263 | "No correct entry in MaterialPropertiesTable",
|
|---|
| 264 | FatalException,"Missing MaterialPropertiesTable entry.");
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | if (verboseLevel>1) {
|
|---|
| 268 | G4cout << "\n"
|
|---|
| 269 | << "Particle = " << pDef->GetParticleName() << "\n"
|
|---|
| 270 | << "Energy Dep. = " << TotalEnergyDeposit/MeV << "\n"
|
|---|
| 271 | << "Yield = "
|
|---|
| 272 | << Scint_Yield_Vector->GetProperty(TotalEnergyDeposit)
|
|---|
| 273 | << "\n" << G4endl;
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | // Obtain the scintillation yield using the total energy
|
|---|
| 277 | // deposited by the particle in this step.
|
|---|
| 278 |
|
|---|
| 279 | // Units: [# scintillation photons]
|
|---|
| 280 | ScintillationYield = Scint_Yield_Vector->
|
|---|
| 281 | GetProperty(TotalEnergyDeposit);
|
|---|
| 282 | } else {
|
|---|
| 283 | // The default linear scintillation process
|
|---|
| 284 | ScintillationYield = aMaterialPropertiesTable->
|
|---|
| 285 | GetConstProperty("SCINTILLATIONYIELD");
|
|---|
| 286 |
|
|---|
| 287 | // Units: [# scintillation photons / MeV]
|
|---|
| 288 | ScintillationYield *= YieldFactor;
|
|---|
| 289 | }
|
|---|
| 290 |
|
|---|
| 291 | G4double ResolutionScale = aMaterialPropertiesTable->
|
|---|
| 292 | GetConstProperty("RESOLUTIONSCALE");
|
|---|
| 293 |
|
|---|
| 294 | // Birks law saturation:
|
|---|
| 295 |
|
|---|
| 296 | G4double constBirks = 0.0;
|
|---|
| 297 |
|
|---|
| 298 | constBirks = aMaterial->GetIonisation()->GetBirksConstant();
|
|---|
| 299 |
|
|---|
| 300 | G4double MeanNumberOfPhotons;
|
|---|
| 301 |
|
|---|
| 302 | // Birk's correction via emSaturation and specifying scintillation by
|
|---|
| 303 | // by particle type are physically mutually exclusive
|
|---|
| 304 |
|
|---|
| 305 | if (scintillationByParticleType)
|
|---|
| 306 | MeanNumberOfPhotons = ScintillationYield;
|
|---|
| 307 | else if (emSaturation)
|
|---|
| 308 | MeanNumberOfPhotons = ScintillationYield*
|
|---|
| 309 | (emSaturation->VisibleEnergyDeposition(&aStep));
|
|---|
| 310 | else
|
|---|
| 311 | MeanNumberOfPhotons = ScintillationYield*TotalEnergyDeposit;
|
|---|
| 312 |
|
|---|
| 313 | G4int NumPhotons;
|
|---|
| 314 |
|
|---|
| 315 | if (MeanNumberOfPhotons > 10.)
|
|---|
| 316 | {
|
|---|
| 317 | G4double sigma = ResolutionScale * std::sqrt(MeanNumberOfPhotons);
|
|---|
| 318 | NumPhotons = G4int(G4RandGauss::shoot(MeanNumberOfPhotons,sigma)+0.5);
|
|---|
| 319 | }
|
|---|
| 320 | else
|
|---|
| 321 | {
|
|---|
| 322 | NumPhotons = G4int(G4Poisson(MeanNumberOfPhotons));
|
|---|
| 323 | }
|
|---|
| 324 |
|
|---|
| 325 | if (NumPhotons <= 0)
|
|---|
| 326 | {
|
|---|
| 327 | // return unchanged particle and no secondaries
|
|---|
| 328 |
|
|---|
| 329 | aParticleChange.SetNumberOfSecondaries(0);
|
|---|
| 330 |
|
|---|
| 331 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 332 | }
|
|---|
| 333 |
|
|---|
| 334 | ////////////////////////////////////////////////////////////////
|
|---|
| 335 |
|
|---|
| 336 | aParticleChange.SetNumberOfSecondaries(NumPhotons);
|
|---|
| 337 |
|
|---|
| 338 | if (fTrackSecondariesFirst) {
|
|---|
| 339 | if (aTrack.GetTrackStatus() == fAlive )
|
|---|
| 340 | aParticleChange.ProposeTrackStatus(fSuspend);
|
|---|
| 341 | }
|
|---|
| 342 |
|
|---|
| 343 | ////////////////////////////////////////////////////////////////
|
|---|
| 344 |
|
|---|
| 345 | G4int materialIndex = aMaterial->GetIndex();
|
|---|
| 346 |
|
|---|
| 347 | // Retrieve the Scintillation Integral for this material
|
|---|
| 348 | // new G4PhysicsOrderedFreeVector allocated to hold CII's
|
|---|
| 349 |
|
|---|
| 350 | G4int Num = NumPhotons;
|
|---|
| 351 |
|
|---|
| 352 | for (G4int scnt = 1; scnt <= nscnt; scnt++) {
|
|---|
| 353 |
|
|---|
| 354 | G4double ScintillationTime = 0.*ns;
|
|---|
| 355 | G4double ScintillationRiseTime = 0.*ns;
|
|---|
| 356 | G4PhysicsOrderedFreeVector* ScintillationIntegral = NULL;
|
|---|
| 357 |
|
|---|
| 358 | if (scnt == 1) {
|
|---|
| 359 | if (nscnt == 1) {
|
|---|
| 360 | if(Fast_Intensity){
|
|---|
| 361 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 362 | GetConstProperty("FASTTIMECONSTANT");
|
|---|
| 363 | if (fFiniteRiseTime) {
|
|---|
| 364 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 365 | GetConstProperty("FASTSCINTILLATIONRISETIME");
|
|---|
| 366 | }
|
|---|
| 367 | ScintillationIntegral =
|
|---|
| 368 | (G4PhysicsOrderedFreeVector*)((*theFastIntegralTable)(materialIndex));
|
|---|
| 369 | }
|
|---|
| 370 | if(Slow_Intensity){
|
|---|
| 371 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 372 | GetConstProperty("SLOWTIMECONSTANT");
|
|---|
| 373 | if (fFiniteRiseTime) {
|
|---|
| 374 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 375 | GetConstProperty("SLOWSCINTILLATIONRISETIME");
|
|---|
| 376 | }
|
|---|
| 377 | ScintillationIntegral =
|
|---|
| 378 | (G4PhysicsOrderedFreeVector*)((*theSlowIntegralTable)(materialIndex));
|
|---|
| 379 | }
|
|---|
| 380 | }
|
|---|
| 381 | else {
|
|---|
| 382 | G4double YieldRatio = aMaterialPropertiesTable->
|
|---|
| 383 | GetConstProperty("YIELDRATIO");
|
|---|
| 384 | if ( ExcitationRatio == 1.0 ) {
|
|---|
| 385 | Num = G4int (std::min(YieldRatio,1.0) * NumPhotons);
|
|---|
| 386 | }
|
|---|
| 387 | else {
|
|---|
| 388 | Num = G4int (std::min(ExcitationRatio,1.0) * NumPhotons);
|
|---|
| 389 | }
|
|---|
| 390 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 391 | GetConstProperty("FASTTIMECONSTANT");
|
|---|
| 392 | if (fFiniteRiseTime) {
|
|---|
| 393 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 394 | GetConstProperty("FASTSCINTILLATIONRISETIME");
|
|---|
| 395 | }
|
|---|
| 396 | ScintillationIntegral =
|
|---|
| 397 | (G4PhysicsOrderedFreeVector*)((*theFastIntegralTable)(materialIndex));
|
|---|
| 398 | }
|
|---|
| 399 | }
|
|---|
| 400 | else {
|
|---|
| 401 | Num = NumPhotons - Num;
|
|---|
| 402 | ScintillationTime = aMaterialPropertiesTable->
|
|---|
| 403 | GetConstProperty("SLOWTIMECONSTANT");
|
|---|
| 404 | if (fFiniteRiseTime) {
|
|---|
| 405 | ScintillationRiseTime = aMaterialPropertiesTable->
|
|---|
| 406 | GetConstProperty("SLOWSCINTILLATIONRISETIME");
|
|---|
| 407 | }
|
|---|
| 408 | ScintillationIntegral =
|
|---|
| 409 | (G4PhysicsOrderedFreeVector*)((*theSlowIntegralTable)(materialIndex));
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | if (!ScintillationIntegral) continue;
|
|---|
| 413 |
|
|---|
| 414 | // Max Scintillation Integral
|
|---|
| 415 |
|
|---|
| 416 | G4double CIImax = ScintillationIntegral->GetMaxValue();
|
|---|
| 417 |
|
|---|
| 418 | for (G4int i = 0; i < Num; i++) {
|
|---|
| 419 |
|
|---|
| 420 | // Determine photon energy
|
|---|
| 421 |
|
|---|
| 422 | G4double CIIvalue = G4UniformRand()*CIImax;
|
|---|
| 423 | G4double sampledEnergy =
|
|---|
| 424 | ScintillationIntegral->GetEnergy(CIIvalue);
|
|---|
| 425 |
|
|---|
| 426 | if (verboseLevel>1) {
|
|---|
| 427 | G4cout << "sampledEnergy = " << sampledEnergy << G4endl;
|
|---|
| 428 | G4cout << "CIIvalue = " << CIIvalue << G4endl;
|
|---|
| 429 | }
|
|---|
| 430 |
|
|---|
| 431 | // Generate random photon direction
|
|---|
| 432 |
|
|---|
| 433 | G4double cost = 1. - 2.*G4UniformRand();
|
|---|
| 434 | G4double sint = std::sqrt((1.-cost)*(1.+cost));
|
|---|
| 435 |
|
|---|
| 436 | G4double phi = twopi*G4UniformRand();
|
|---|
| 437 | G4double sinp = std::sin(phi);
|
|---|
| 438 | G4double cosp = std::cos(phi);
|
|---|
| 439 |
|
|---|
| 440 | G4double px = sint*cosp;
|
|---|
| 441 | G4double py = sint*sinp;
|
|---|
| 442 | G4double pz = cost;
|
|---|
| 443 |
|
|---|
| 444 | // Create photon momentum direction vector
|
|---|
| 445 |
|
|---|
| 446 | G4ParticleMomentum photonMomentum(px, py, pz);
|
|---|
| 447 |
|
|---|
| 448 | // Determine polarization of new photon
|
|---|
| 449 |
|
|---|
| 450 | G4double sx = cost*cosp;
|
|---|
| 451 | G4double sy = cost*sinp;
|
|---|
| 452 | G4double sz = -sint;
|
|---|
| 453 |
|
|---|
| 454 | G4ThreeVector photonPolarization(sx, sy, sz);
|
|---|
| 455 |
|
|---|
| 456 | G4ThreeVector perp = photonMomentum.cross(photonPolarization);
|
|---|
| 457 |
|
|---|
| 458 | phi = twopi*G4UniformRand();
|
|---|
| 459 | sinp = std::sin(phi);
|
|---|
| 460 | cosp = std::cos(phi);
|
|---|
| 461 |
|
|---|
| 462 | photonPolarization = cosp * photonPolarization + sinp * perp;
|
|---|
| 463 |
|
|---|
| 464 | photonPolarization = photonPolarization.unit();
|
|---|
| 465 |
|
|---|
| 466 | // Generate a new photon:
|
|---|
| 467 |
|
|---|
| 468 | G4DynamicParticle* aScintillationPhoton =
|
|---|
| 469 | new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(),
|
|---|
| 470 | photonMomentum);
|
|---|
| 471 | aScintillationPhoton->SetPolarization
|
|---|
| 472 | (photonPolarization.x(),
|
|---|
| 473 | photonPolarization.y(),
|
|---|
| 474 | photonPolarization.z());
|
|---|
| 475 |
|
|---|
| 476 | aScintillationPhoton->SetKineticEnergy(sampledEnergy);
|
|---|
| 477 |
|
|---|
| 478 | // Generate new G4Track object:
|
|---|
| 479 |
|
|---|
| 480 | G4double rand;
|
|---|
| 481 |
|
|---|
| 482 | if (aParticle->GetDefinition()->GetPDGCharge() != 0) {
|
|---|
| 483 | rand = G4UniformRand();
|
|---|
| 484 | } else {
|
|---|
| 485 | rand = 1.0;
|
|---|
| 486 | }
|
|---|
| 487 |
|
|---|
| 488 | G4double delta = rand * aStep.GetStepLength();
|
|---|
| 489 | G4double deltaTime = delta /
|
|---|
| 490 | ((pPreStepPoint->GetVelocity()+
|
|---|
| 491 | pPostStepPoint->GetVelocity())/2.);
|
|---|
| 492 |
|
|---|
| 493 | // emission time distribution
|
|---|
| 494 | if (ScintillationRiseTime==0.0) {
|
|---|
| 495 | deltaTime = deltaTime -
|
|---|
| 496 | ScintillationTime * std::log( G4UniformRand() );
|
|---|
| 497 | } else {
|
|---|
| 498 | deltaTime = deltaTime +
|
|---|
| 499 | sample_time(ScintillationRiseTime, ScintillationTime);
|
|---|
| 500 | }
|
|---|
| 501 |
|
|---|
| 502 | G4double aSecondaryTime = t0 + deltaTime;
|
|---|
| 503 |
|
|---|
| 504 | G4ThreeVector aSecondaryPosition =
|
|---|
| 505 | x0 + rand * aStep.GetDeltaPosition();
|
|---|
| 506 |
|
|---|
| 507 | G4Track* aSecondaryTrack =
|
|---|
| 508 | new G4Track(aScintillationPhoton,aSecondaryTime,aSecondaryPosition);
|
|---|
| 509 |
|
|---|
| 510 | aSecondaryTrack->SetTouchableHandle(
|
|---|
| 511 | aStep.GetPreStepPoint()->GetTouchableHandle());
|
|---|
| 512 | // aSecondaryTrack->SetTouchableHandle((G4VTouchable*)0);
|
|---|
| 513 |
|
|---|
| 514 | aSecondaryTrack->SetParentID(aTrack.GetTrackID());
|
|---|
| 515 |
|
|---|
| 516 | aParticleChange.AddSecondary(aSecondaryTrack);
|
|---|
| 517 |
|
|---|
| 518 | }
|
|---|
| 519 | }
|
|---|
| 520 |
|
|---|
| 521 | if (verboseLevel>0) {
|
|---|
| 522 | G4cout << "\n Exiting from G4Scintillation::DoIt -- NumberOfSecondaries = "
|
|---|
| 523 | << aParticleChange.GetNumberOfSecondaries() << G4endl;
|
|---|
| 524 | }
|
|---|
| 525 |
|
|---|
| 526 | return G4VRestDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 527 | }
|
|---|
| 528 |
|
|---|
| 529 | // BuildThePhysicsTable for the scintillation process
|
|---|
| 530 | // --------------------------------------------------
|
|---|
| 531 | //
|
|---|
| 532 |
|
|---|
| 533 | void G4Scintillation::BuildThePhysicsTable()
|
|---|
| 534 | {
|
|---|
| 535 | if (theFastIntegralTable && theSlowIntegralTable) return;
|
|---|
| 536 |
|
|---|
| 537 | const G4MaterialTable* theMaterialTable =
|
|---|
| 538 | G4Material::GetMaterialTable();
|
|---|
| 539 | G4int numOfMaterials = G4Material::GetNumberOfMaterials();
|
|---|
| 540 |
|
|---|
| 541 | // create new physics table
|
|---|
| 542 |
|
|---|
| 543 | if(!theFastIntegralTable)theFastIntegralTable = new G4PhysicsTable(numOfMaterials);
|
|---|
| 544 | if(!theSlowIntegralTable)theSlowIntegralTable = new G4PhysicsTable(numOfMaterials);
|
|---|
| 545 |
|
|---|
| 546 | // loop for materials
|
|---|
| 547 |
|
|---|
| 548 | for (G4int i=0 ; i < numOfMaterials; i++)
|
|---|
| 549 | {
|
|---|
| 550 | G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector =
|
|---|
| 551 | new G4PhysicsOrderedFreeVector();
|
|---|
| 552 | G4PhysicsOrderedFreeVector* bPhysicsOrderedFreeVector =
|
|---|
| 553 | new G4PhysicsOrderedFreeVector();
|
|---|
| 554 |
|
|---|
| 555 | // Retrieve vector of scintillation wavelength intensity for
|
|---|
| 556 | // the material from the material's optical properties table.
|
|---|
| 557 |
|
|---|
| 558 | G4Material* aMaterial = (*theMaterialTable)[i];
|
|---|
| 559 |
|
|---|
| 560 | G4MaterialPropertiesTable* aMaterialPropertiesTable =
|
|---|
| 561 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 562 |
|
|---|
| 563 | if (aMaterialPropertiesTable) {
|
|---|
| 564 |
|
|---|
| 565 | G4MaterialPropertyVector* theFastLightVector =
|
|---|
| 566 | aMaterialPropertiesTable->GetProperty("FASTCOMPONENT");
|
|---|
| 567 |
|
|---|
| 568 | if (theFastLightVector) {
|
|---|
| 569 |
|
|---|
| 570 | // Retrieve the first intensity point in vector
|
|---|
| 571 | // of (photon energy, intensity) pairs
|
|---|
| 572 |
|
|---|
| 573 | theFastLightVector->ResetIterator();
|
|---|
| 574 | ++(*theFastLightVector); // advance to 1st entry
|
|---|
| 575 |
|
|---|
| 576 | G4double currentIN = theFastLightVector->
|
|---|
| 577 | GetProperty();
|
|---|
| 578 |
|
|---|
| 579 | if (currentIN >= 0.0) {
|
|---|
| 580 |
|
|---|
| 581 | // Create first (photon energy, Scintillation
|
|---|
| 582 | // Integral pair
|
|---|
| 583 |
|
|---|
| 584 | G4double currentPM = theFastLightVector->
|
|---|
| 585 | GetPhotonEnergy();
|
|---|
| 586 |
|
|---|
| 587 | G4double currentCII = 0.0;
|
|---|
| 588 |
|
|---|
| 589 | aPhysicsOrderedFreeVector->
|
|---|
| 590 | InsertValues(currentPM , currentCII);
|
|---|
| 591 |
|
|---|
| 592 | // Set previous values to current ones prior to loop
|
|---|
| 593 |
|
|---|
| 594 | G4double prevPM = currentPM;
|
|---|
| 595 | G4double prevCII = currentCII;
|
|---|
| 596 | G4double prevIN = currentIN;
|
|---|
| 597 |
|
|---|
| 598 | // loop over all (photon energy, intensity)
|
|---|
| 599 | // pairs stored for this material
|
|---|
| 600 |
|
|---|
| 601 | while(++(*theFastLightVector))
|
|---|
| 602 | {
|
|---|
| 603 | currentPM = theFastLightVector->
|
|---|
| 604 | GetPhotonEnergy();
|
|---|
| 605 |
|
|---|
| 606 | currentIN = theFastLightVector->
|
|---|
| 607 | GetProperty();
|
|---|
| 608 |
|
|---|
| 609 | currentCII = 0.5 * (prevIN + currentIN);
|
|---|
| 610 |
|
|---|
| 611 | currentCII = prevCII +
|
|---|
| 612 | (currentPM - prevPM) * currentCII;
|
|---|
| 613 |
|
|---|
| 614 | aPhysicsOrderedFreeVector->
|
|---|
| 615 | InsertValues(currentPM, currentCII);
|
|---|
| 616 |
|
|---|
| 617 | prevPM = currentPM;
|
|---|
| 618 | prevCII = currentCII;
|
|---|
| 619 | prevIN = currentIN;
|
|---|
| 620 | }
|
|---|
| 621 |
|
|---|
| 622 | }
|
|---|
| 623 | }
|
|---|
| 624 |
|
|---|
| 625 | G4MaterialPropertyVector* theSlowLightVector =
|
|---|
| 626 | aMaterialPropertiesTable->GetProperty("SLOWCOMPONENT");
|
|---|
| 627 |
|
|---|
| 628 | if (theSlowLightVector) {
|
|---|
| 629 |
|
|---|
| 630 | // Retrieve the first intensity point in vector
|
|---|
| 631 | // of (photon energy, intensity) pairs
|
|---|
| 632 |
|
|---|
| 633 | theSlowLightVector->ResetIterator();
|
|---|
| 634 | ++(*theSlowLightVector); // advance to 1st entry
|
|---|
| 635 |
|
|---|
| 636 | G4double currentIN = theSlowLightVector->
|
|---|
| 637 | GetProperty();
|
|---|
| 638 |
|
|---|
| 639 | if (currentIN >= 0.0) {
|
|---|
| 640 |
|
|---|
| 641 | // Create first (photon energy, Scintillation
|
|---|
| 642 | // Integral pair
|
|---|
| 643 |
|
|---|
| 644 | G4double currentPM = theSlowLightVector->
|
|---|
| 645 | GetPhotonEnergy();
|
|---|
| 646 |
|
|---|
| 647 | G4double currentCII = 0.0;
|
|---|
| 648 |
|
|---|
| 649 | bPhysicsOrderedFreeVector->
|
|---|
| 650 | InsertValues(currentPM , currentCII);
|
|---|
| 651 |
|
|---|
| 652 | // Set previous values to current ones prior to loop
|
|---|
| 653 |
|
|---|
| 654 | G4double prevPM = currentPM;
|
|---|
| 655 | G4double prevCII = currentCII;
|
|---|
| 656 | G4double prevIN = currentIN;
|
|---|
| 657 |
|
|---|
| 658 | // loop over all (photon energy, intensity)
|
|---|
| 659 | // pairs stored for this material
|
|---|
| 660 |
|
|---|
| 661 | while(++(*theSlowLightVector))
|
|---|
| 662 | {
|
|---|
| 663 | currentPM = theSlowLightVector->
|
|---|
| 664 | GetPhotonEnergy();
|
|---|
| 665 |
|
|---|
| 666 | currentIN=theSlowLightVector->
|
|---|
| 667 | GetProperty();
|
|---|
| 668 |
|
|---|
| 669 | currentCII = 0.5 * (prevIN + currentIN);
|
|---|
| 670 |
|
|---|
| 671 | currentCII = prevCII +
|
|---|
| 672 | (currentPM - prevPM) * currentCII;
|
|---|
| 673 |
|
|---|
| 674 | bPhysicsOrderedFreeVector->
|
|---|
| 675 | InsertValues(currentPM, currentCII);
|
|---|
| 676 |
|
|---|
| 677 | prevPM = currentPM;
|
|---|
| 678 | prevCII = currentCII;
|
|---|
| 679 | prevIN = currentIN;
|
|---|
| 680 | }
|
|---|
| 681 |
|
|---|
| 682 | }
|
|---|
| 683 | }
|
|---|
| 684 | }
|
|---|
| 685 |
|
|---|
| 686 | // The scintillation integral(s) for a given material
|
|---|
| 687 | // will be inserted in the table(s) according to the
|
|---|
| 688 | // position of the material in the material table.
|
|---|
| 689 |
|
|---|
| 690 | theFastIntegralTable->insertAt(i,aPhysicsOrderedFreeVector);
|
|---|
| 691 | theSlowIntegralTable->insertAt(i,bPhysicsOrderedFreeVector);
|
|---|
| 692 |
|
|---|
| 693 | }
|
|---|
| 694 | }
|
|---|
| 695 |
|
|---|
| 696 | // Called by the user to set the scintillation yield as a function
|
|---|
| 697 | // of energy deposited by particle type
|
|---|
| 698 |
|
|---|
| 699 | void G4Scintillation::SetScintillationByParticleType(const G4bool scintType)
|
|---|
| 700 | {
|
|---|
| 701 | if (emSaturation) {
|
|---|
| 702 | G4Exception("G4Scintillation::SetScintillationByParticleType", "Redefinition",
|
|---|
| 703 | JustWarning, "Birks Saturation is replaced by ScintillationByParticleType!");
|
|---|
| 704 | RemoveSaturation();
|
|---|
| 705 | }
|
|---|
| 706 | scintillationByParticleType = scintType;
|
|---|
| 707 | }
|
|---|
| 708 |
|
|---|
| 709 | // GetMeanFreePath
|
|---|
| 710 | // ---------------
|
|---|
| 711 | //
|
|---|
| 712 |
|
|---|
| 713 | G4double G4Scintillation::GetMeanFreePath(const G4Track&,
|
|---|
| 714 | G4double ,
|
|---|
| 715 | G4ForceCondition* condition)
|
|---|
| 716 | {
|
|---|
| 717 | *condition = StronglyForced;
|
|---|
| 718 |
|
|---|
| 719 | return DBL_MAX;
|
|---|
| 720 |
|
|---|
| 721 | }
|
|---|
| 722 |
|
|---|
| 723 | // GetMeanLifeTime
|
|---|
| 724 | // ---------------
|
|---|
| 725 | //
|
|---|
| 726 |
|
|---|
| 727 | G4double G4Scintillation::GetMeanLifeTime(const G4Track&,
|
|---|
| 728 | G4ForceCondition* condition)
|
|---|
| 729 | {
|
|---|
| 730 | *condition = Forced;
|
|---|
| 731 |
|
|---|
| 732 | return DBL_MAX;
|
|---|
| 733 |
|
|---|
| 734 | }
|
|---|
| 735 |
|
|---|
| 736 | G4double G4Scintillation::sample_time(G4double tau1, G4double tau2)
|
|---|
| 737 | {
|
|---|
| 738 | // tau1: rise time and tau2: decay time
|
|---|
| 739 |
|
|---|
| 740 | while(1) {
|
|---|
| 741 | // two random numbers
|
|---|
| 742 | G4double ran1 = G4UniformRand();
|
|---|
| 743 | G4double ran2 = G4UniformRand();
|
|---|
| 744 | //
|
|---|
| 745 | // exponential distribution as envelope function: very efficient
|
|---|
| 746 | //
|
|---|
| 747 | G4double d = (tau1+tau2)/tau2;
|
|---|
| 748 | // make sure the envelope function is
|
|---|
| 749 | // always larger than the bi-exponential
|
|---|
| 750 | G4double t = -1.0*tau2*std::log(1-ran1);
|
|---|
| 751 | G4double g = d*single_exp(t,tau2);
|
|---|
| 752 | if (ran2 <= bi_exp(t,tau1,tau2)/g) return t;
|
|---|
| 753 | }
|
|---|
| 754 | return -1.0;
|
|---|
| 755 | }
|
|---|