| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| [1340] | 27 | // $Id: G4SynchrotronRadiation.cc,v 1.8 2010/10/14 18:38:21 vnivanch Exp $
|
|---|
| 28 | // GEANT4 tag $Name: xrays-V09-03-05 $
|
|---|
| [819] | 29 | //
|
|---|
| 30 | // --------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class implementation file
|
|---|
| 32 | // CERN Geneva Switzerland
|
|---|
| 33 | //
|
|---|
| 34 | // History: first implementation,
|
|---|
| 35 | // 21-5-98 V.Grichine
|
|---|
| 36 | // 28-05-01, V.Ivanchenko minor changes to provide ANSI -wall compilation
|
|---|
| 37 | // 04.03.05, V.Grichine: get local field interface
|
|---|
| 38 | // 18-05-06 H. Burkhardt: Energy spectrum from function rather than table
|
|---|
| 39 | //
|
|---|
| 40 | //
|
|---|
| 41 | //
|
|---|
| 42 | //
|
|---|
| 43 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 44 |
|
|---|
| 45 | #include "G4SynchrotronRadiation.hh"
|
|---|
| 46 | #include "G4UnitsTable.hh"
|
|---|
| [1340] | 47 | #include "G4EmProcessSubType.hh"
|
|---|
| [819] | 48 |
|
|---|
| 49 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 50 | //
|
|---|
| 51 | // Constructor
|
|---|
| 52 | //
|
|---|
| 53 |
|
|---|
| 54 | G4SynchrotronRadiation::G4SynchrotronRadiation(const G4String& processName,
|
|---|
| 55 | G4ProcessType type):G4VDiscreteProcess (processName, type),
|
|---|
| 56 | theGamma (G4Gamma::Gamma() ),
|
|---|
| 57 | theElectron ( G4Electron::Electron() ),
|
|---|
| 58 | thePositron ( G4Positron::Positron() )
|
|---|
| 59 | {
|
|---|
| 60 | G4TransportationManager* transportMgr =
|
|---|
| 61 | G4TransportationManager::GetTransportationManager();
|
|---|
| 62 |
|
|---|
| 63 | fFieldPropagator = transportMgr->GetPropagatorInField();
|
|---|
| 64 |
|
|---|
| [1337] | 65 | fLambdaConst = std::sqrt(3.0)*electron_mass_c2/
|
|---|
| [819] | 66 | (2.5*fine_structure_const*eplus*c_light) ;
|
|---|
| 67 | fEnergyConst = 1.5*c_light*c_light*eplus*hbar_Planck/electron_mass_c2 ;
|
|---|
| [1340] | 68 |
|
|---|
| 69 | SetProcessSubType(fSynchrotronRadiation);
|
|---|
| [819] | 70 | verboseLevel=1;
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| 73 | /////////////////////////////////////////////////////////////////////////
|
|---|
| 74 | //
|
|---|
| 75 | // Destructor
|
|---|
| 76 | //
|
|---|
| 77 |
|
|---|
| 78 | G4SynchrotronRadiation::~G4SynchrotronRadiation()
|
|---|
| [1340] | 79 | {}
|
|---|
| [819] | 80 |
|
|---|
| 81 | /////////////////////////////// METHODS /////////////////////////////////
|
|---|
| 82 | //
|
|---|
| 83 | //
|
|---|
| 84 | // Production of synchrotron X-ray photon
|
|---|
| 85 | // GEANT4 internal units.
|
|---|
| 86 | //
|
|---|
| 87 |
|
|---|
| 88 |
|
|---|
| 89 | G4double
|
|---|
| 90 | G4SynchrotronRadiation::GetMeanFreePath( const G4Track& trackData,
|
|---|
| 91 | G4double,
|
|---|
| 92 | G4ForceCondition* condition)
|
|---|
| 93 | {
|
|---|
| 94 | // gives the MeanFreePath in GEANT4 internal units
|
|---|
| 95 | G4double MeanFreePath;
|
|---|
| 96 |
|
|---|
| 97 | const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle();
|
|---|
| 98 |
|
|---|
| 99 | *condition = NotForced ;
|
|---|
| 100 |
|
|---|
| 101 | G4double gamma = aDynamicParticle->GetTotalEnergy()/
|
|---|
| 102 | aDynamicParticle->GetMass();
|
|---|
| 103 |
|
|---|
| 104 | G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 105 |
|
|---|
| 106 | if ( gamma < 1.0e3 ) MeanFreePath = DBL_MAX;
|
|---|
| 107 | else
|
|---|
| 108 | {
|
|---|
| 109 |
|
|---|
| 110 | G4ThreeVector FieldValue;
|
|---|
| 111 | const G4Field* pField = 0;
|
|---|
| 112 |
|
|---|
| 113 | G4FieldManager* fieldMgr=0;
|
|---|
| 114 | G4bool fieldExertsForce = false;
|
|---|
| 115 |
|
|---|
| 116 | if( (particleCharge != 0.0) )
|
|---|
| 117 | {
|
|---|
| 118 | fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
|
|---|
| 119 |
|
|---|
| 120 | if ( fieldMgr != 0 )
|
|---|
| 121 | {
|
|---|
| 122 | // If the field manager has no field, there is no field !
|
|---|
| 123 |
|
|---|
| 124 | fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
|
|---|
| 125 | }
|
|---|
| 126 | }
|
|---|
| 127 | if ( fieldExertsForce )
|
|---|
| 128 | {
|
|---|
| 129 | pField = fieldMgr->GetDetectorField() ;
|
|---|
| 130 | G4ThreeVector globPosition = trackData.GetPosition();
|
|---|
| 131 |
|
|---|
| 132 | G4double globPosVec[3], FieldValueVec[3];
|
|---|
| 133 |
|
|---|
| 134 | globPosVec[0] = globPosition.x();
|
|---|
| 135 | globPosVec[1] = globPosition.y();
|
|---|
| 136 | globPosVec[2] = globPosition.z();
|
|---|
| 137 |
|
|---|
| 138 | pField->GetFieldValue( globPosVec, FieldValueVec );
|
|---|
| 139 |
|
|---|
| 140 | FieldValue = G4ThreeVector( FieldValueVec[0],
|
|---|
| 141 | FieldValueVec[1],
|
|---|
| 142 | FieldValueVec[2] );
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 |
|
|---|
| 146 | G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
|
|---|
| 147 | G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum) ;
|
|---|
| 148 | G4double perpB = unitMcrossB.mag() ;
|
|---|
| 149 |
|
|---|
| 150 | if( perpB > 0.0 ) MeanFreePath = fLambdaConst/perpB;
|
|---|
| 151 | else MeanFreePath = DBL_MAX;
|
|---|
| 152 |
|
|---|
| 153 | static G4bool FirstTime=true;
|
|---|
| 154 | if(verboseLevel > 0 && FirstTime)
|
|---|
| 155 | {
|
|---|
| 156 | G4cout << "G4SynchrotronRadiation::GetMeanFreePath :" << '\n' << std::setprecision(4)
|
|---|
| 157 | << " MeanFreePath = " << G4BestUnit(MeanFreePath, "Length")
|
|---|
| 158 | << G4endl;
|
|---|
| 159 | if(verboseLevel > 1)
|
|---|
| 160 | {
|
|---|
| 161 | G4ThreeVector pvec=aDynamicParticle->GetMomentum();
|
|---|
| 162 | G4double Btot=FieldValue.getR();
|
|---|
| 163 | G4double ptot=pvec.getR();
|
|---|
| 164 | G4double rho= ptot / (MeV * c_light * Btot ); // full bending radius
|
|---|
| 165 | G4double Theta=unitMomentum.theta(FieldValue); // angle between particle and field
|
|---|
| 166 | G4cout
|
|---|
| 167 | << " B = " << Btot/tesla << " Tesla"
|
|---|
| 168 | << " perpB = " << perpB/tesla << " Tesla"
|
|---|
| [1337] | 169 | << " Theta = " << Theta << " std::sin(Theta)=" << std::sin(Theta) << '\n'
|
|---|
| [819] | 170 | << " ptot = " << G4BestUnit(ptot,"Energy")
|
|---|
| 171 | << " rho = " << G4BestUnit(rho,"Length")
|
|---|
| 172 | << G4endl;
|
|---|
| 173 | }
|
|---|
| 174 | FirstTime=false;
|
|---|
| 175 | }
|
|---|
| 176 | }
|
|---|
| 177 | else MeanFreePath = DBL_MAX;
|
|---|
| 178 |
|
|---|
| 179 |
|
|---|
| 180 | }
|
|---|
| 181 |
|
|---|
| 182 | return MeanFreePath;
|
|---|
| 183 | }
|
|---|
| 184 |
|
|---|
| 185 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 186 | //
|
|---|
| 187 | //
|
|---|
| 188 |
|
|---|
| 189 | G4VParticleChange*
|
|---|
| 190 | G4SynchrotronRadiation::PostStepDoIt(const G4Track& trackData,
|
|---|
| 191 | const G4Step& stepData )
|
|---|
| 192 |
|
|---|
| 193 | {
|
|---|
| 194 | aParticleChange.Initialize(trackData);
|
|---|
| 195 |
|
|---|
| 196 | const G4DynamicParticle* aDynamicParticle=trackData.GetDynamicParticle();
|
|---|
| 197 |
|
|---|
| 198 | G4double gamma = aDynamicParticle->GetTotalEnergy()/
|
|---|
| 199 | (aDynamicParticle->GetMass() );
|
|---|
| 200 |
|
|---|
| 201 | if(gamma <= 1.0e3 )
|
|---|
| 202 | {
|
|---|
| 203 | return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
|
|---|
| 204 | }
|
|---|
| 205 | G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 206 |
|
|---|
| 207 | G4ThreeVector FieldValue;
|
|---|
| 208 | const G4Field* pField = 0 ;
|
|---|
| 209 |
|
|---|
| 210 | G4FieldManager* fieldMgr=0;
|
|---|
| 211 | G4bool fieldExertsForce = false;
|
|---|
| 212 |
|
|---|
| 213 | if( (particleCharge != 0.0) )
|
|---|
| 214 | {
|
|---|
| 215 | fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
|
|---|
| 216 | if ( fieldMgr != 0 )
|
|---|
| 217 | {
|
|---|
| 218 | // If the field manager has no field, there is no field !
|
|---|
| 219 |
|
|---|
| 220 | fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
|
|---|
| 221 | }
|
|---|
| 222 | }
|
|---|
| 223 | if ( fieldExertsForce )
|
|---|
| 224 | {
|
|---|
| 225 | pField = fieldMgr->GetDetectorField() ;
|
|---|
| 226 | G4ThreeVector globPosition = trackData.GetPosition() ;
|
|---|
| 227 | G4double globPosVec[3], FieldValueVec[3] ;
|
|---|
| 228 | globPosVec[0] = globPosition.x() ;
|
|---|
| 229 | globPosVec[1] = globPosition.y() ;
|
|---|
| 230 | globPosVec[2] = globPosition.z() ;
|
|---|
| 231 |
|
|---|
| 232 | pField->GetFieldValue( globPosVec, FieldValueVec ) ;
|
|---|
| 233 | FieldValue = G4ThreeVector( FieldValueVec[0],
|
|---|
| 234 | FieldValueVec[1],
|
|---|
| 235 | FieldValueVec[2] );
|
|---|
| 236 |
|
|---|
| 237 | G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
|
|---|
| 238 | G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum);
|
|---|
| 239 | G4double perpB = unitMcrossB.mag() ;
|
|---|
| 240 | if(perpB > 0.0)
|
|---|
| 241 | {
|
|---|
| 242 | // M-C of synchrotron photon energy
|
|---|
| 243 |
|
|---|
| 244 | G4double energyOfSR = GetRandomEnergySR(gamma,perpB);
|
|---|
| 245 |
|
|---|
| 246 | // check against insufficient energy
|
|---|
| 247 |
|
|---|
| 248 | if( energyOfSR <= 0.0 )
|
|---|
| 249 | {
|
|---|
| 250 | return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
|
|---|
| 251 | }
|
|---|
| 252 | G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
|
|---|
| 253 | G4ParticleMomentum
|
|---|
| 254 | particleDirection = aDynamicParticle->GetMomentumDirection();
|
|---|
| 255 |
|
|---|
| 256 | // M-C of its direction
|
|---|
| 257 |
|
|---|
| 258 | G4double Teta = G4UniformRand()/gamma ; // Very roughly
|
|---|
| 259 |
|
|---|
| 260 | G4double Phi = twopi * G4UniformRand() ;
|
|---|
| 261 |
|
|---|
| [1337] | 262 | G4double dirx = std::sin(Teta)*std::cos(Phi) ,
|
|---|
| 263 | diry = std::sin(Teta)*std::sin(Phi) ,
|
|---|
| 264 | dirz = std::cos(Teta) ;
|
|---|
| [819] | 265 |
|
|---|
| 266 | G4ThreeVector gammaDirection ( dirx, diry, dirz);
|
|---|
| 267 | gammaDirection.rotateUz(particleDirection);
|
|---|
| 268 |
|
|---|
| 269 | // polarization of new gamma
|
|---|
| 270 |
|
|---|
| [1337] | 271 | // G4double sx = std::cos(Teta)*std::cos(Phi);
|
|---|
| 272 | // G4double sy = std::cos(Teta)*std::sin(Phi);
|
|---|
| 273 | // G4double sz = -std::sin(Teta);
|
|---|
| [819] | 274 |
|
|---|
| 275 | G4ThreeVector gammaPolarization = FieldValue.cross(gammaDirection);
|
|---|
| 276 | gammaPolarization = gammaPolarization.unit();
|
|---|
| 277 |
|
|---|
| 278 | // (sx, sy, sz);
|
|---|
| 279 | // gammaPolarization.rotateUz(particleDirection);
|
|---|
| 280 |
|
|---|
| 281 | // create G4DynamicParticle object for the SR photon
|
|---|
| 282 |
|
|---|
| 283 | G4DynamicParticle* aGamma= new G4DynamicParticle ( theGamma,
|
|---|
| 284 | gammaDirection,
|
|---|
| 285 | energyOfSR );
|
|---|
| 286 | aGamma->SetPolarization( gammaPolarization.x(),
|
|---|
| 287 | gammaPolarization.y(),
|
|---|
| 288 | gammaPolarization.z() );
|
|---|
| 289 |
|
|---|
| 290 |
|
|---|
| 291 | aParticleChange.SetNumberOfSecondaries(1);
|
|---|
| 292 | aParticleChange.AddSecondary(aGamma);
|
|---|
| 293 |
|
|---|
| 294 | // Update the incident particle
|
|---|
| 295 |
|
|---|
| 296 | G4double newKinEnergy = kineticEnergy - energyOfSR ;
|
|---|
| 297 | aParticleChange.ProposeLocalEnergyDeposit (0.);
|
|---|
| 298 |
|
|---|
| 299 | if (newKinEnergy > 0.)
|
|---|
| 300 | {
|
|---|
| 301 | aParticleChange.ProposeMomentumDirection( particleDirection );
|
|---|
| 302 | aParticleChange.ProposeEnergy( newKinEnergy );
|
|---|
| 303 | }
|
|---|
| 304 | else
|
|---|
| 305 | {
|
|---|
| 306 | aParticleChange.ProposeEnergy( 0. );
|
|---|
| 307 | }
|
|---|
| 308 | }
|
|---|
| 309 | }
|
|---|
| 310 | return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
|
|---|
| 311 | }
|
|---|
| 312 |
|
|---|
| 313 |
|
|---|
| 314 | /////////////////////////////////////////////////////////////////////////////////
|
|---|
| 315 | //
|
|---|
| 316 | //
|
|---|
| 317 |
|
|---|
| 318 | G4double G4SynchrotronRadiation::InvSynFracInt(G4double x)
|
|---|
| 319 | // direct generation
|
|---|
| 320 | {
|
|---|
| 321 | // from 0 to 0.7
|
|---|
| 322 | const G4double aa1=0 ,aa2=0.7;
|
|---|
| 323 | const G4int ncheb1=27;
|
|---|
| 324 | static const G4double cheb1[] =
|
|---|
| 325 | { 1.22371665676046468821,0.108956475422163837267,0.0383328524358594396134,0.00759138369340257753721,
|
|---|
| 326 | 0.00205712048644963340914,0.000497810783280019308661,0.000130743691810302187818,0.0000338168760220395409734,
|
|---|
| 327 | 8.97049680900520817728e-6,2.38685472794452241466e-6,6.41923109149104165049e-7,1.73549898982749277843e-7,
|
|---|
| 328 | 4.72145949240790029153e-8,1.29039866111999149636e-8,3.5422080787089834182e-9,9.7594757336403784905e-10,
|
|---|
| 329 | 2.6979510184976065731e-10,7.480422622550977077e-11,2.079598176402699913e-11,5.79533622220841193e-12,
|
|---|
| 330 | 1.61856011449276096e-12,4.529450993473807e-13,1.2698603951096606e-13,3.566117394511206e-14,1.00301587494091e-14,
|
|---|
| 331 | 2.82515346447219e-15,7.9680747949792e-16};
|
|---|
| 332 | // from 0.7 to 0.9132260271183847
|
|---|
| 333 | const G4double aa3=0.9132260271183847;
|
|---|
| 334 | const G4int ncheb2=27;
|
|---|
| 335 | static const G4double cheb2[] =
|
|---|
| 336 | { 1.1139496701107756,0.3523967429328067,0.0713849171926623,0.01475818043595387,0.003381255637322462,
|
|---|
| 337 | 0.0008228057599452224,0.00020785506681254216,0.00005390169253706556,0.000014250571923902464,3.823880733161044e-6,
|
|---|
| 338 | 1.0381966089136036e-6,2.8457557457837253e-7,7.86223332179956e-8,2.1866609342508474e-8,6.116186259857143e-9,
|
|---|
| 339 | 1.7191233618437565e-9,4.852755117740807e-10,1.3749966961763457e-10,3.908961987062447e-11,1.1146253766895824e-11,
|
|---|
| 340 | 3.1868887323415814e-12,9.134319791300977e-13,2.6211077371181566e-13,7.588643377757906e-14,2.1528376972619e-14,
|
|---|
| 341 | 6.030906040404772e-15,1.9549163926819867e-15};
|
|---|
| 342 | // Chebyshev with exp/log scale
|
|---|
| 343 | // a = -Log[1 - SynFracInt[1]]; b = -Log[1 - SynFracInt[7]];
|
|---|
| 344 | const G4double aa4=2.4444485538746025480,aa5=9.3830728608909477079;
|
|---|
| 345 | const G4int ncheb3=28;
|
|---|
| 346 | static const G4double cheb3[] =
|
|---|
| 347 | { 1.2292683840435586977,0.160353449247864455879,-0.0353559911947559448721,0.00776901561223573936985,
|
|---|
| 348 | -0.00165886451971685133259,0.000335719118906954279467,-0.0000617184951079161143187,9.23534039743246708256e-6,
|
|---|
| 349 | -6.06747198795168022842e-7,-3.07934045961999778094e-7,1.98818772614682367781e-7,-8.13909971567720135413e-8,
|
|---|
| 350 | 2.84298174969641838618e-8,-9.12829766621316063548e-9,2.77713868004820551077e-9,-8.13032767247834023165e-10,
|
|---|
| 351 | 2.31128525568385247392e-10,-6.41796873254200220876e-11,1.74815310473323361543e-11,-4.68653536933392363045e-12,
|
|---|
| 352 | 1.24016595805520752748e-12,-3.24839432979935522159e-13,8.44601465226513952994e-14,-2.18647276044246803998e-14,
|
|---|
| 353 | 5.65407548745690689978e-15,-1.46553625917463067508e-15,3.82059606377570462276e-16,-1.00457896653436912508e-16};
|
|---|
| 354 | const G4double aa6=33.122936966163038145;
|
|---|
| 355 | const G4int ncheb4=27;
|
|---|
| 356 | static const G4double cheb4[] =
|
|---|
| 357 | {1.69342658227676741765,0.0742766400841232319225,-0.019337880608635717358,0.00516065527473364110491,
|
|---|
| 358 | -0.00139342012990307729473,0.000378549864052022522193,-0.000103167085583785340215,0.0000281543441271412178337,
|
|---|
| 359 | -7.68409742018258198651e-6,2.09543221890204537392e-6,-5.70493140367526282946e-7,1.54961164548564906446e-7,
|
|---|
| 360 | -4.19665599629607704794e-8,1.13239680054166507038e-8,-3.04223563379021441863e-9,8.13073745977562957997e-10,
|
|---|
| 361 | -2.15969415476814981374e-10,5.69472105972525594811e-11,-1.48844799572430829499e-11,3.84901514438304484973e-12,
|
|---|
| 362 | -9.82222575944247161834e-13,2.46468329208292208183e-13,-6.04953826265982691612e-14,1.44055805710671611984e-14,
|
|---|
| 363 | -3.28200813577388740722e-15,6.96566359173765367675e-16,-1.294122794852896275e-16};
|
|---|
| 364 |
|
|---|
| 365 | if(x<aa2) return x*x*x*Chebyshev(aa1,aa2,cheb1,ncheb1,x);
|
|---|
| 366 | else if(x<aa3) return Chebyshev(aa2,aa3,cheb2,ncheb2,x);
|
|---|
| 367 | else if(x<1-0.0000841363)
|
|---|
| [1337] | 368 | { G4double y=-std::log(1-x);
|
|---|
| [819] | 369 | return y*Chebyshev(aa4,aa5,cheb3,ncheb3,y);
|
|---|
| 370 | }
|
|---|
| 371 | else
|
|---|
| [1337] | 372 | { G4double y=-std::log(1-x);
|
|---|
| [819] | 373 | return y*Chebyshev(aa5,aa6,cheb4,ncheb4,y);
|
|---|
| 374 | }
|
|---|
| 375 | }
|
|---|
| 376 |
|
|---|
| 377 | G4double G4SynchrotronRadiation::GetRandomEnergySR(G4double gamma, G4double perpB)
|
|---|
| 378 | {
|
|---|
| 379 |
|
|---|
| 380 | G4double Ecr=fEnergyConst*gamma*gamma*perpB;
|
|---|
| 381 |
|
|---|
| 382 | static G4bool FirstTime=true;
|
|---|
| 383 | if(verboseLevel > 0 && FirstTime)
|
|---|
| [1337] | 384 | { G4double Emean=8./(15.*std::sqrt(3.))*Ecr; // mean photon energy
|
|---|
| 385 | G4double E_rms=std::sqrt(211./675.)*Ecr; // rms of photon energy distribution
|
|---|
| [819] | 386 | G4cout << "G4SynchrotronRadiation::GetRandomEnergySR :" << '\n' << std::setprecision(4)
|
|---|
| 387 | << " Ecr = " << G4BestUnit(Ecr,"Energy") << '\n'
|
|---|
| 388 | << " Emean = " << G4BestUnit(Emean,"Energy") << '\n'
|
|---|
| 389 | << " E_rms = " << G4BestUnit(E_rms,"Energy") << G4endl;
|
|---|
| 390 | FirstTime=false;
|
|---|
| 391 | }
|
|---|
| 392 |
|
|---|
| 393 | G4double energySR=Ecr*InvSynFracInt(G4UniformRand());
|
|---|
| 394 | return energySR;
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 |
|
|---|
| 398 | void G4SynchrotronRadiation::BuildPhysicsTable(const G4ParticleDefinition& part)
|
|---|
| 399 | {
|
|---|
| 400 | if(0 < verboseLevel && &part==theElectron ) PrintInfoDefinition();
|
|---|
| 401 | }
|
|---|
| 402 |
|
|---|
| 403 | void G4SynchrotronRadiation::PrintInfoDefinition() // not yet called, usually called from BuildPhysicsTable
|
|---|
| 404 | {
|
|---|
| 405 | G4String comments ="Incoherent Synchrotron Radiation\n";
|
|---|
| 406 | G4cout << G4endl << GetProcessName() << ": " << comments
|
|---|
| 407 | << " good description for long magnets at all energies" << G4endl;
|
|---|
| 408 | }
|
|---|
| 409 |
|
|---|
| 410 | ///////////////////// end of G4SynchrotronRadiation.cc
|
|---|