source: trunk/source/processes/electromagnetic/xrays/src/G4SynchrotronRadiationInMat.cc@ 1315

Last change on this file since 1315 was 1228, checked in by garnier, 16 years ago

update geant4.9.3 tag

File size: 21.0 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4SynchrotronRadiationInMat.cc,v 1.2 2006/06/29 19:56:17 gunter Exp $
[1228]28// GEANT4 tag $Name: geant4-09-03 $
[819]29//
30// --------------------------------------------------------------
31// GEANT 4 class implementation file
32// CERN Geneva Switzerland
33//
34// History: first implementation,
35// 21-5-98 V.Grichine
36// 28-05-01, V.Ivanchenko minor changes to provide ANSI -wall compilation
37// 04.03.05, V.Grichine: get local field interface
38// 19-05-06, V.Ivanchenko rename from G4SynchrotronRadiation
39//
40//
41///////////////////////////////////////////////////////////////////////////
42
43#include "G4SynchrotronRadiationInMat.hh"
44#include "G4Integrator.hh"
45
46using namespace std;
47
48////////////////////////////////////////////////////////////////////
49//
50// Constant for calculation of mean free path
51//
52
53const G4double
54G4SynchrotronRadiationInMat::fLambdaConst = sqrt(3.0)*electron_mass_c2/
55 (2.5*fine_structure_const*eplus*c_light) ;
56
57/////////////////////////////////////////////////////////////////////
58//
59// Constant for calculation of characterictic energy
60//
61
62const G4double
63G4SynchrotronRadiationInMat::fEnergyConst = 1.5*c_light*c_light*eplus*hbar_Planck/
64 electron_mass_c2 ;
65
66////////////////////////////////////////////////////////////////////
67//
68// Array of integral probability of synchrotron photons:
69//
70// the corresponding energy = 0.0001*i*i*(characteristic energy)
71//
72
73const G4double
74G4SynchrotronRadiationInMat::fIntegralProbabilityOfSR[200] =
75{
76 1.000000e+00, 9.428859e-01, 9.094095e-01, 8.813971e-01, 8.565154e-01,
77 8.337008e-01, 8.124961e-01, 7.925217e-01, 7.735517e-01, 7.554561e-01,
78 7.381233e-01, 7.214521e-01, 7.053634e-01, 6.898006e-01, 6.747219e-01,
79 6.600922e-01, 6.458793e-01, 6.320533e-01, 6.185872e-01, 6.054579e-01,
80 5.926459e-01, 5.801347e-01, 5.679103e-01, 5.559604e-01, 5.442736e-01,
81 5.328395e-01, 5.216482e-01, 5.106904e-01, 4.999575e-01, 4.894415e-01,
82 4.791351e-01, 4.690316e-01, 4.591249e-01, 4.494094e-01, 4.398800e-01,
83 4.305320e-01, 4.213608e-01, 4.123623e-01, 4.035325e-01, 3.948676e-01,
84 3.863639e-01, 3.780179e-01, 3.698262e-01, 3.617858e-01, 3.538933e-01,
85 3.461460e-01, 3.385411e-01, 3.310757e-01, 3.237474e-01, 3.165536e-01,
86 3.094921e-01, 3.025605e-01, 2.957566e-01, 2.890784e-01, 2.825237e-01,
87 2.760907e-01, 2.697773e-01, 2.635817e-01, 2.575020e-01, 2.515365e-01,
88 2.456834e-01, 2.399409e-01, 2.343074e-01, 2.287812e-01, 2.233607e-01,
89 2.180442e-01, 2.128303e-01, 2.077174e-01, 2.027040e-01, 1.977885e-01,
90 1.929696e-01, 1.882457e-01, 1.836155e-01, 1.790775e-01, 1.746305e-01,
91 1.702730e-01, 1.660036e-01, 1.618212e-01, 1.577243e-01, 1.537117e-01,
92 1.497822e-01, 1.459344e-01, 1.421671e-01, 1.384791e-01, 1.348691e-01,
93 1.313360e-01, 1.278785e-01, 1.244956e-01, 1.211859e-01, 1.179483e-01,
94 1.147818e-01, 1.116850e-01, 1.086570e-01, 1.056966e-01, 1.028026e-01,
95 9.997405e-02, 9.720975e-02, 9.450865e-02, 9.186969e-02, 8.929179e-02,
96 8.677391e-02, 8.431501e-02, 8.191406e-02, 7.957003e-02, 7.728192e-02,
97 7.504872e-02, 7.286944e-02, 7.074311e-02, 6.866874e-02, 6.664538e-02,
98 6.467208e-02, 6.274790e-02, 6.087191e-02, 5.904317e-02, 5.726079e-02,
99 5.552387e-02, 5.383150e-02, 5.218282e-02, 5.057695e-02, 4.901302e-02,
100 4.749020e-02, 4.600763e-02, 4.456450e-02, 4.315997e-02, 4.179325e-02,
101 4.046353e-02, 3.917002e-02, 3.791195e-02, 3.668855e-02, 3.549906e-02,
102 3.434274e-02, 3.321884e-02, 3.212665e-02, 3.106544e-02, 3.003452e-02,
103 2.903319e-02, 2.806076e-02, 2.711656e-02, 2.619993e-02, 2.531021e-02,
104 2.444677e-02, 2.360897e-02, 2.279620e-02, 2.200783e-02, 2.124327e-02,
105 2.050194e-02, 1.978324e-02, 1.908662e-02, 1.841151e-02, 1.775735e-02,
106 1.712363e-02, 1.650979e-02, 1.591533e-02, 1.533973e-02, 1.478250e-02,
107 1.424314e-02, 1.372117e-02, 1.321613e-02, 1.272755e-02, 1.225498e-02,
108 1.179798e-02, 1.135611e-02, 1.092896e-02, 1.051609e-02, 1.011712e-02,
109 9.731635e-03, 9.359254e-03, 8.999595e-03, 8.652287e-03, 8.316967e-03,
110 7.993280e-03, 7.680879e-03, 7.379426e-03, 7.088591e-03, 6.808051e-03,
111 6.537491e-03, 6.276605e-03, 6.025092e-03, 5.782661e-03, 5.549027e-03,
112 5.323912e-03, 5.107045e-03, 4.898164e-03, 4.697011e-03, 4.503336e-03,
113 4.316896e-03, 4.137454e-03, 3.964780e-03, 3.798649e-03, 3.638843e-03,
114 3.485150e-03, 3.337364e-03, 3.195284e-03, 3.058715e-03, 2.927469e-03,
115 2.801361e-03, 2.680213e-03, 2.563852e-03, 2.452110e-03, 2.344824e-03
116};
117
118///////////////////////////////////////////////////////////////////////
119//
120// Constructor
121//
122
123G4SynchrotronRadiationInMat::G4SynchrotronRadiationInMat(const G4String& processName,
124 G4ProcessType type):G4VDiscreteProcess (processName, type),
125 LowestKineticEnergy (10.*keV),
126 HighestKineticEnergy (100.*TeV),
127 TotBin(200),
128 theGamma (G4Gamma::Gamma() ),
129 theElectron ( G4Electron::Electron() ),
130 thePositron ( G4Positron::Positron() ), fAlpha(0.0), fRootNumber(80),
131 fVerboseLevel( verboseLevel )
132{
133 G4TransportationManager* transportMgr = G4TransportationManager::GetTransportationManager();
134
135 fFieldPropagator = transportMgr->GetPropagatorInField();
136
137}
138
139/////////////////////////////////////////////////////////////////////////
140//
141// Destructor
142//
143
144G4SynchrotronRadiationInMat::~G4SynchrotronRadiationInMat()
145{
146 ;
147}
148
149
150/////////////////////////////// METHODS /////////////////////////////////
151//
152//
153// Production of synchrotron X-ray photon
154// GEANT4 internal units.
155//
156
157
158G4double
159G4SynchrotronRadiationInMat::GetMeanFreePath( const G4Track& trackData,
160 G4double,
161 G4ForceCondition* condition)
162{
163 // gives the MeanFreePath in GEANT4 internal units
164 G4double MeanFreePath;
165
166 const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle();
167 // G4Material* aMaterial = trackData.GetMaterial();
168
169 //G4bool isOutRange ;
170
171 *condition = NotForced ;
172
173 G4double gamma = aDynamicParticle->GetTotalEnergy()/
174 aDynamicParticle->GetMass();
175
176 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
177
178 G4double KineticEnergy = aDynamicParticle->GetKineticEnergy();
179
180 if ( KineticEnergy < LowestKineticEnergy || gamma < 1.0e3 ) MeanFreePath = DBL_MAX;
181 else
182 {
183
184 G4ThreeVector FieldValue;
185 const G4Field* pField = 0;
186
187 G4FieldManager* fieldMgr=0;
188 G4bool fieldExertsForce = false;
189
190 if( (particleCharge != 0.0) )
191 {
192 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
193
194 if ( fieldMgr != 0 )
195 {
196 // If the field manager has no field, there is no field !
197
198 fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
199 }
200 }
201 if ( fieldExertsForce )
202 {
203 pField = fieldMgr->GetDetectorField() ;
204 G4ThreeVector globPosition = trackData.GetPosition();
205
206 G4double globPosVec[3], FieldValueVec[3];
207
208 globPosVec[0] = globPosition.x();
209 globPosVec[1] = globPosition.y();
210 globPosVec[2] = globPosition.z();
211
212 pField->GetFieldValue( globPosVec, FieldValueVec );
213
214 FieldValue = G4ThreeVector( FieldValueVec[0],
215 FieldValueVec[1],
216 FieldValueVec[2] );
217
218
219
220 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
221 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum) ;
222 G4double perpB = unitMcrossB.mag() ;
223 G4double beta = aDynamicParticle->GetTotalMomentum()/
224 (aDynamicParticle->GetTotalEnergy() );
225
226 if( perpB > 0.0 ) MeanFreePath = fLambdaConst*beta/perpB;
227 else MeanFreePath = DBL_MAX;
228 }
229 else MeanFreePath = DBL_MAX;
230 }
231 if(fVerboseLevel > 0)
232 {
233 G4cout<<"G4SynchrotronRadiationInMat::MeanFreePath = "<<MeanFreePath/m<<" m"<<G4endl;
234 }
235 return MeanFreePath;
236}
237
238////////////////////////////////////////////////////////////////////////////////
239//
240//
241
242G4VParticleChange*
243G4SynchrotronRadiationInMat::PostStepDoIt(const G4Track& trackData,
244 const G4Step& stepData )
245
246{
247 aParticleChange.Initialize(trackData);
248
249 const G4DynamicParticle* aDynamicParticle=trackData.GetDynamicParticle();
250
251 G4double gamma = aDynamicParticle->GetTotalEnergy()/
252 (aDynamicParticle->GetMass() );
253
254 if(gamma <= 1.0e3 )
255 {
256 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
257 }
258 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
259
260 G4ThreeVector FieldValue;
261 const G4Field* pField = 0 ;
262
263 G4FieldManager* fieldMgr=0;
264 G4bool fieldExertsForce = false;
265
266 if( (particleCharge != 0.0) )
267 {
268 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
269 if ( fieldMgr != 0 )
270 {
271 // If the field manager has no field, there is no field !
272
273 fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
274 }
275 }
276 if ( fieldExertsForce )
277 {
278 pField = fieldMgr->GetDetectorField() ;
279 G4ThreeVector globPosition = trackData.GetPosition() ;
280 G4double globPosVec[3], FieldValueVec[3] ;
281 globPosVec[0] = globPosition.x() ;
282 globPosVec[1] = globPosition.y() ;
283 globPosVec[2] = globPosition.z() ;
284
285 pField->GetFieldValue( globPosVec, FieldValueVec ) ;
286 FieldValue = G4ThreeVector( FieldValueVec[0],
287 FieldValueVec[1],
288 FieldValueVec[2] );
289
290 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
291 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum);
292 G4double perpB = unitMcrossB.mag() ;
293 if(perpB > 0.0)
294 {
295 // M-C of synchrotron photon energy
296
297 G4double energyOfSR = GetRandomEnergySR(gamma,perpB);
298
299 if(fVerboseLevel > 0)
300 {
301 G4cout<<"SR photon energy = "<<energyOfSR/keV<<" keV"<<G4endl;
302 }
303 // check against insufficient energy
304
305 if( energyOfSR <= 0.0 )
306 {
307 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
308 }
309 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
310 G4ParticleMomentum
311 particleDirection = aDynamicParticle->GetMomentumDirection();
312
313 // M-C of its direction
314
315 G4double Teta = G4UniformRand()/gamma ; // Very roughly
316
317 G4double Phi = twopi * G4UniformRand() ;
318
319 G4double dirx = sin(Teta)*cos(Phi) ,
320 diry = sin(Teta)*sin(Phi) ,
321 dirz = cos(Teta) ;
322
323 G4ThreeVector gammaDirection ( dirx, diry, dirz);
324 gammaDirection.rotateUz(particleDirection);
325
326 // polarization of new gamma
327
328 // G4double sx = cos(Teta)*cos(Phi);
329 // G4double sy = cos(Teta)*sin(Phi);
330 // G4double sz = -sin(Teta);
331
332 G4ThreeVector gammaPolarization = FieldValue.cross(gammaDirection);
333 gammaPolarization = gammaPolarization.unit();
334
335 // (sx, sy, sz);
336 // gammaPolarization.rotateUz(particleDirection);
337
338 // create G4DynamicParticle object for the SR photon
339
340 G4DynamicParticle* aGamma= new G4DynamicParticle ( G4Gamma::Gamma(),
341 gammaDirection,
342 energyOfSR );
343 aGamma->SetPolarization( gammaPolarization.x(),
344 gammaPolarization.y(),
345 gammaPolarization.z() );
346
347
348 aParticleChange.SetNumberOfSecondaries(1);
349 aParticleChange.AddSecondary(aGamma);
350
351 // Update the incident particle
352
353 G4double newKinEnergy = kineticEnergy - energyOfSR ;
354
355 if (newKinEnergy > 0.)
356 {
357 aParticleChange.ProposeMomentumDirection( particleDirection );
358 aParticleChange.ProposeEnergy( newKinEnergy );
359 aParticleChange.ProposeLocalEnergyDeposit (0.);
360 }
361 else
362 {
363 aParticleChange.ProposeEnergy( 0. );
364 aParticleChange.ProposeLocalEnergyDeposit (0.);
365 G4double charge = aDynamicParticle->GetDefinition()->GetPDGCharge();
366 if (charge<0.)
367 {
368 aParticleChange.ProposeTrackStatus(fStopAndKill) ;
369 }
370 else
371 {
372 aParticleChange.ProposeTrackStatus(fStopButAlive) ;
373 }
374 }
375 }
376 else
377 {
378 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
379 }
380 }
381 return G4VDiscreteProcess::PostStepDoIt(trackData,stepData);
382}
383
384
385G4double
386G4SynchrotronRadiationInMat::GetPhotonEnergy( const G4Track& trackData,
387 const G4Step& )
388
389{
390 G4int i ;
391 G4double energyOfSR = -1.0 ;
392 //G4Material* aMaterial=trackData.GetMaterial() ;
393
394 const G4DynamicParticle* aDynamicParticle=trackData.GetDynamicParticle();
395
396 G4double gamma = aDynamicParticle->GetTotalEnergy()/
397 (aDynamicParticle->GetMass() ) ;
398
399 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge();
400
401 G4ThreeVector FieldValue;
402 const G4Field* pField = 0 ;
403
404 G4FieldManager* fieldMgr=0;
405 G4bool fieldExertsForce = false;
406
407 if( (particleCharge != 0.0) )
408 {
409 fieldMgr = fFieldPropagator->FindAndSetFieldManager( trackData.GetVolume() );
410 if ( fieldMgr != 0 )
411 {
412 // If the field manager has no field, there is no field !
413
414 fieldExertsForce = ( fieldMgr->GetDetectorField() != 0 );
415 }
416 }
417 if ( fieldExertsForce )
418 {
419 pField = fieldMgr->GetDetectorField();
420 G4ThreeVector globPosition = trackData.GetPosition();
421 G4double globPosVec[3], FieldValueVec[3];
422
423 globPosVec[0] = globPosition.x();
424 globPosVec[1] = globPosition.y();
425 globPosVec[2] = globPosition.z();
426
427 pField->GetFieldValue( globPosVec, FieldValueVec );
428 FieldValue = G4ThreeVector( FieldValueVec[0],
429 FieldValueVec[1],
430 FieldValueVec[2] );
431
432 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection();
433 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum) ;
434 G4double perpB = unitMcrossB.mag();
435 if( perpB > 0.0 )
436 {
437 // M-C of synchrotron photon energy
438
439 G4double random = G4UniformRand() ;
440 for(i=0;i<200;i++)
441 {
442 if(random >= fIntegralProbabilityOfSR[i]) break ;
443 }
444 energyOfSR = 0.0001*i*i*fEnergyConst*gamma*gamma*perpB ;
445
446 // check against insufficient energy
447
448 if(energyOfSR <= 0.0)
449 {
450 return -1.0 ;
451 }
452 //G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
453 //G4ParticleMomentum
454 //particleDirection = aDynamicParticle->GetMomentumDirection();
455
456 // Gamma production cut in this material
457 //G4double
458 //gammaEnergyCut = (G4Gamma::GetCutsInEnergy())[aMaterial->GetIndex()];
459
460 // SR photon has energy more than the current material cut
461 // M-C of its direction
462
463 //G4double Teta = G4UniformRand()/gamma ; // Very roughly
464
465 //G4double Phi = twopi * G4UniformRand() ;
466 }
467 else
468 {
469 return -1.0 ;
470 }
471 }
472 return energyOfSR ;
473}
474
475/////////////////////////////////////////////////////////////////////////////////
476//
477//
478
479G4double G4SynchrotronRadiationInMat::GetRandomEnergySR(G4double gamma, G4double perpB)
480{
481 G4int i, iMax;
482 G4double energySR, random, position;
483
484 iMax = 200;
485 random = G4UniformRand();
486
487 for( i = 0; i < iMax; i++ )
488 {
489 if( random >= fIntegralProbabilityOfSR[i] ) break;
490 }
491 if(i <= 0 ) position = G4UniformRand(); // 0.
492 else if( i>= iMax) position = G4double(iMax);
493 else position = i + G4UniformRand(); // -1
494 //
495 // it was in initial implementation:
496 // energyOfSR = 0.0001*i*i*fEnergyConst*gamma*gamma*perpB ;
497
498 energySR = 0.0001*position*position*fEnergyConst*gamma*gamma*perpB;
499
500 if( energySR < 0. ) energySR = 0.;
501
502 return energySR;
503}
504
505/////////////////////////////////////////////////////////////////////////
506//
507// return
508
509G4double G4SynchrotronRadiationInMat::GetProbSpectrumSRforInt( G4double t)
510{
511 G4double result, hypCos2, hypCos=std::cosh(t);
512
513 hypCos2 = hypCos*hypCos;
514 result = std::cosh(5.*t/3.)*std::exp(t-fKsi*hypCos); // fKsi > 0. !
515 result /= hypCos2;
516 return result;
517}
518
519///////////////////////////////////////////////////////////////////////////
520//
521// return the probability to emit SR photon with relative energy
522// energy/energy_c >= ksi
523// for ksi <= 0. P = 1., however the method works for ksi > 0 only!
524
525G4double G4SynchrotronRadiationInMat::GetIntProbSR( G4double ksi)
526{
527 if (ksi <= 0.) return 1.0;
528 fKsi = ksi; // should be > 0. !
529 G4int n;
530 G4double result, a;
531
532 a = fAlpha; // always = 0.
533 n = fRootNumber; // around default = 80
534
535 G4Integrator<G4SynchrotronRadiationInMat, G4double(G4SynchrotronRadiationInMat::*)(G4double)> integral;
536
537 result = integral.Laguerre(this,
538 &G4SynchrotronRadiationInMat::GetProbSpectrumSRforInt, a, n);
539
540 result *= 3./5./pi;
541
542 return result;
543}
544
545/////////////////////////////////////////////////////////////////////////
546//
547// return an auxiliary function for K_5/3 integral representation
548
549G4double G4SynchrotronRadiationInMat::GetProbSpectrumSRforEnergy( G4double t)
550{
551 G4double result, hypCos=std::cosh(t);
552
553 result = std::cosh(5.*t/3.)*std::exp(t - fKsi*hypCos); // fKsi > 0. !
554 result /= hypCos;
555 return result;
556}
557
558///////////////////////////////////////////////////////////////////////////
559//
560// return the probability to emit SR photon energy with relative energy
561// energy/energy_c >= ksi
562// for ksi <= 0. P = 1., however the method works for ksi > 0 only!
563
564G4double G4SynchrotronRadiationInMat::GetEnergyProbSR( G4double ksi)
565{
566 if (ksi <= 0.) return 1.0;
567 fKsi = ksi; // should be > 0. !
568 G4int n;
569 G4double result, a;
570
571 a = fAlpha; // always = 0.
572 n = fRootNumber; // around default = 80
573
574 G4Integrator<G4SynchrotronRadiationInMat, G4double(G4SynchrotronRadiationInMat::*)(G4double)> integral;
575
576 result = integral.Laguerre(this,
577 &G4SynchrotronRadiationInMat::GetProbSpectrumSRforEnergy, a, n);
578
579 result *= 9.*std::sqrt(3.)*ksi/8./pi;
580
581 return result;
582}
583
584/////////////////////////////////////////////////////////////////////////////
585//
586//
587
588G4double G4SynchrotronRadiationInMat::GetIntegrandForAngleK( G4double t)
589{
590 G4double result, hypCos=std::cosh(t);
591
592 result = std::cosh(fOrderAngleK*t)*std::exp(t - fEta*hypCos); // fEta > 0. !
593 result /= hypCos;
594 return result;
595}
596
597//////////////////////////////////////////////////////////////////////////
598//
599// Return K 1/3 or 2/3 for angular distribution
600
601G4double G4SynchrotronRadiationInMat::GetAngleK( G4double eta)
602{
603 fEta = eta; // should be > 0. !
604 G4int n;
605 G4double result, a;
606
607 a = fAlpha; // always = 0.
608 n = fRootNumber; // around default = 80
609
610 G4Integrator<G4SynchrotronRadiationInMat, G4double(G4SynchrotronRadiationInMat::*)(G4double)> integral;
611
612 result = integral.Laguerre(this,
613 &G4SynchrotronRadiationInMat::GetIntegrandForAngleK, a, n);
614
615 return result;
616}
617
618/////////////////////////////////////////////////////////////////////////
619//
620// Relative angle diff distribution for given fKsi, which is set externally
621
622G4double G4SynchrotronRadiationInMat::GetAngleNumberAtGammaKsi( G4double gpsi)
623{
624 G4double result, funK, funK2, gpsi2 = gpsi*gpsi;
625
626 fPsiGamma = gpsi;
627 fEta = 0.5*fKsi*(1 + gpsi2)*std::sqrt(1 + gpsi2);
628
629 fOrderAngleK = 1./3.;
630 funK = GetAngleK(fEta);
631 funK2 = funK*funK;
632
633 result = gpsi2*funK2/(1 + gpsi2);
634
635 fOrderAngleK = 2./3.;
636 funK = GetAngleK(fEta);
637 funK2 = funK*funK;
638
639 result += funK2;
640 result *= (1 + gpsi2)*fKsi;
641
642 return result;
643}
644
645
646///////////////////// end of G4SynchrotronRadiationInMat.cc
647
Note: See TracBrowser for help on using the repository browser.