source: trunk/source/processes/electromagnetic/xrays/src/G4TransparentRegXTRadiator.cc@ 1066

Last change on this file since 1066 was 1007, checked in by garnier, 17 years ago

update to geant4.9.2

File size: 8.0 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4TransparentRegXTRadiator.cc,v 1.11 2007/09/29 17:49:34 vnivanch Exp $
[1007]28// GEANT4 tag $Name: geant4-09-02 $
[819]29//
30
31#include <complex>
32
33#include "G4TransparentRegXTRadiator.hh"
34#include "Randomize.hh"
35#include "G4Integrator.hh"
36#include "G4Gamma.hh"
37
38using namespace std;
39
40////////////////////////////////////////////////////////////////////////////
41//
42// Constructor, destructor
43
44G4TransparentRegXTRadiator::G4TransparentRegXTRadiator(G4LogicalVolume *anEnvelope,
45 G4Material* foilMat,G4Material* gasMat,
46 G4double a, G4double b, G4int n,
47 const G4String& processName) :
48 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
49{
50 if(verboseLevel > 0)
51 G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
52
53 // Build energy and angular integral spectra of X-ray TR photons from
54 // a radiator
55
56 fAlphaPlate = 10000;
57 fAlphaGas = 1000;
58
59 // BuildTable();
60}
61
62///////////////////////////////////////////////////////////////////////////
63
64G4TransparentRegXTRadiator::~G4TransparentRegXTRadiator()
65{
66 ;
67}
68
69///////////////////////////////////////////////////////////////////////////
70//
71//
72
73G4double G4TransparentRegXTRadiator::SpectralXTRdEdx(G4double energy)
74{
75 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC,aMa, bMb, sigma;
76 G4int k, kMax, kMin;
77
78 aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
79 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
80 sigma = aMa + bMb;
81
82 cofPHC = 4*pi*hbarc;
83 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
84 cof1 = fPlateThick*tmp;
85 cof2 = fGasThick*tmp;
86
87 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
88 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
89 cofMin /= cofPHC;
90
91 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
92 // else kMin = 1;
93
94
95 kMin = G4int(cofMin);
96 if (cofMin > kMin) kMin++;
97
98 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
99 // tmp /= cofPHC;
100 // kMax = G4int(tmp);
101 // if(kMax < 0) kMax = 0;
102 // kMax += kMin;
103
104
105 kMax = kMin + 19; // 9; // kMin + G4int(tmp);
106
107 // tmp /= fGamma;
108 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
109 // G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
110
111 for( k = kMin; k <= kMax; k++ )
112 {
113 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
114 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
115 // tmp = sin(tmp)*sin(tmp)*abs(k-cofMin)/result;
116 if( k == kMin && kMin == G4int(cofMin) )
117 {
118 sum += 0.5*sin(tmp)*sin(tmp)*abs(k-cofMin)/result;
119 }
120 else
121 {
122 sum += sin(tmp)*sin(tmp)*abs(k-cofMin)/result;
123 }
124 if(verboseLevel > 2)
125 {
126 G4cout<<"k = "<<k<<"; tmp = "<<sin(tmp)*sin(tmp)*abs(k-cofMin)/result
127 <<"; sum = "<<sum<<G4endl;
128 }
129 }
130 result = 4*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
131 // result *= ( 1 - exp(-0.5*fPlateNumber*sigma) )/( 1 - exp(-0.5*sigma) );
132 // fPlateNumber;
133 result *= fPlateNumber; // *exp(-0.5*fPlateNumber*sigma);
134 // +1-exp(-0.5*fPlateNumber*sigma);
135 /*
136 fEnergy = energy;
137 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
138 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
139
140 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
141 0.0,0.3*fMaxThetaTR) +
142 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
143 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
144 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
145 0.6*fMaxThetaTR,fMaxThetaTR) ;
146 result += tmp;
147 */
148 return result;
149}
150
151
152///////////////////////////////////////////////////////////////////////////
153//
154// Approximation for radiator interference factor for the case of
155// fully Regular radiator. The plate and gas gap thicknesses are fixed .
156// The mean values of the plate and gas gap thicknesses
157// are supposed to be about XTR formation zones but much less than
158// mean absorption length of XTR photons in coresponding material.
159
160G4double
161G4TransparentRegXTRadiator::GetStackFactor( G4double energy,
162 G4double gamma, G4double varAngle )
163{
164 /*
165 G4double result, Za, Zb, Ma, Mb, sigma;
166
167 Za = GetPlateFormationZone(energy,gamma,varAngle);
168 Zb = GetGasFormationZone(energy,gamma,varAngle);
169 Ma = GetPlateLinearPhotoAbs(energy);
170 Mb = GetGasLinearPhotoAbs(energy);
171 sigma = Ma*fPlateThick + Mb*fGasThick;
172
173 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
174 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
175
176 G4complex Ha = pow(Ca,-fAlphaPlate);
177 G4complex Hb = pow(Cb,-fAlphaGas);
178 G4complex H = Ha*Hb;
179 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
180 * G4double(fPlateNumber) ;
181 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
182 * (1.0 - exp(-0.5*fPlateNumber*sigma)) ;
183 // *(1.0 - pow(H,fPlateNumber)) ;
184 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
185 // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
186 result = 2.0*real(R);
187 return result;
188 */
189 // numerically unstable result
190
191 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
192
193 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
194 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
195 aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
196 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
197 sigma = aMa*fPlateThick + bMb*fGasThick;
198 Qa = exp(-0.5*aMa);
199 Qb = exp(-0.5*bMb);
200 Q = Qa*Qb;
201
202 G4complex Ha( Qa*cos(aZa), -Qa*sin(aZa) );
203 G4complex Hb( Qb*cos(bZb), -Qb*sin(bZb) );
204 G4complex H = Ha*Hb;
205 G4complex Hs = conj(H);
206 D = 1.0 /( (1 - Q)*(1 - Q) +
207 4*Q*sin(0.5*(aZa + bZb))*sin(0.5*(aZa + bZb)) );
208 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
209 * G4double(fPlateNumber)*D;
210 G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
211 // * (1.0 - pow(H,fPlateNumber)) * D*D;
212 * (1.0 - exp(-0.5*fPlateNumber*sigma)) * D*D;
213 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
214 result = 2.0*real(R);
215 return result;
216
217}
218
219
220//
221//
222////////////////////////////////////////////////////////////////////////////
223
224
225
226
227
228
229
230
Note: See TracBrowser for help on using the repository browser.