| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 |
|
|---|
| 28 | #include <complex>
|
|---|
| 29 |
|
|---|
| 30 | #include "G4XTRTransparentRegRadModel.hh"
|
|---|
| 31 | #include "Randomize.hh"
|
|---|
| 32 | #include "G4Integrator.hh"
|
|---|
| 33 | #include "G4Gamma.hh"
|
|---|
| 34 |
|
|---|
| 35 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 36 | //
|
|---|
| 37 | // Constructor, destructor
|
|---|
| 38 |
|
|---|
| 39 | G4XTRTransparentRegRadModel::G4XTRTransparentRegRadModel(G4LogicalVolume *anEnvelope,
|
|---|
| 40 | G4Material* foilMat,G4Material* gasMat,
|
|---|
| 41 | G4double a, G4double b, G4int n,
|
|---|
| 42 | const G4String& processName) :
|
|---|
| 43 | G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
|
|---|
| 44 | {
|
|---|
| 45 | G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
|
|---|
| 46 |
|
|---|
| 47 | // Build energy and angular integral spectra of X-ray TR photons from
|
|---|
| 48 | // a radiator
|
|---|
| 49 | fExitFlux = true;
|
|---|
| 50 | fAlphaPlate = 10000;
|
|---|
| 51 | fAlphaGas = 1000;
|
|---|
| 52 |
|
|---|
| 53 | // BuildTable();
|
|---|
| 54 | }
|
|---|
| 55 |
|
|---|
| 56 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 57 |
|
|---|
| 58 | G4XTRTransparentRegRadModel::~G4XTRTransparentRegRadModel()
|
|---|
| 59 | {
|
|---|
| 60 | ;
|
|---|
| 61 | }
|
|---|
| 62 |
|
|---|
| 63 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 64 | //
|
|---|
| 65 | //
|
|---|
| 66 |
|
|---|
| 67 | G4double G4XTRTransparentRegRadModel::SpectralXTRdEdx(G4double energy)
|
|---|
| 68 | {
|
|---|
| 69 | G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC,aMa, bMb, sigma;
|
|---|
| 70 | G4int k, kMax, kMin;
|
|---|
| 71 |
|
|---|
| 72 | aMa = GetPlateLinearPhotoAbs(energy);
|
|---|
| 73 | bMb = GetGasLinearPhotoAbs(energy);
|
|---|
| 74 |
|
|---|
| 75 | if(fCompton)
|
|---|
| 76 | {
|
|---|
| 77 | aMa += GetPlateCompton(energy);
|
|---|
| 78 | bMb += GetGasCompton(energy);
|
|---|
| 79 | }
|
|---|
| 80 | aMa *= fPlateThick;
|
|---|
| 81 | bMb *= fGasThick;
|
|---|
| 82 |
|
|---|
| 83 | sigma = aMa + bMb;
|
|---|
| 84 |
|
|---|
| 85 | cofPHC = 4*pi*hbarc;
|
|---|
| 86 | tmp = (fSigma1 - fSigma2)/cofPHC/energy;
|
|---|
| 87 | cof1 = fPlateThick*tmp;
|
|---|
| 88 | cof2 = fGasThick*tmp;
|
|---|
| 89 |
|
|---|
| 90 | cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
|
|---|
| 91 | cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
|
|---|
| 92 | cofMin /= cofPHC;
|
|---|
| 93 |
|
|---|
| 94 | // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
|
|---|
| 95 | // else kMin = 1;
|
|---|
| 96 |
|
|---|
| 97 |
|
|---|
| 98 | kMin = G4int(cofMin);
|
|---|
| 99 | if (cofMin > kMin) kMin++;
|
|---|
| 100 |
|
|---|
| 101 | // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
|
|---|
| 102 | // tmp /= cofPHC;
|
|---|
| 103 | // kMax = G4int(tmp);
|
|---|
| 104 | // if(kMax < 0) kMax = 0;
|
|---|
| 105 | // kMax += kMin;
|
|---|
| 106 |
|
|---|
| 107 |
|
|---|
| 108 | kMax = kMin + 19; // 5; // 9; // kMin + G4int(tmp);
|
|---|
| 109 |
|
|---|
| 110 | // tmp /= fGamma;
|
|---|
| 111 | // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
|
|---|
| 112 | // G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
|
|---|
| 113 |
|
|---|
| 114 | for( k = kMin; k <= kMax; k++ )
|
|---|
| 115 | {
|
|---|
| 116 | tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
|
|---|
| 117 | result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
|
|---|
| 118 |
|
|---|
| 119 | if( k == kMin && kMin == G4int(cofMin) )
|
|---|
| 120 | {
|
|---|
| 121 | sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
|
|---|
| 122 | }
|
|---|
| 123 | else
|
|---|
| 124 | {
|
|---|
| 125 | sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
|
|---|
| 126 | }
|
|---|
| 127 | // G4cout<<"k = "<<k<<"; sum = "<<sum<<G4endl;
|
|---|
| 128 | }
|
|---|
| 129 | result = 4.*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
|
|---|
| 130 | result *= ( 1. - std::exp(-fPlateNumber*sigma) )/( 1. - std::exp(-sigma) );
|
|---|
| 131 | return result;
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 |
|
|---|
| 135 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 136 | //
|
|---|
| 137 | // Approximation for radiator interference factor for the case of
|
|---|
| 138 | // fully Regular radiator. The plate and gas gap thicknesses are fixed .
|
|---|
| 139 | // The mean values of the plate and gas gap thicknesses
|
|---|
| 140 | // are supposed to be about XTR formation zones but much less than
|
|---|
| 141 | // mean absorption length of XTR photons in coresponding material.
|
|---|
| 142 |
|
|---|
| 143 | G4double
|
|---|
| 144 | G4XTRTransparentRegRadModel::GetStackFactor( G4double energy,
|
|---|
| 145 | G4double gamma, G4double varAngle )
|
|---|
| 146 | {
|
|---|
| 147 | /*
|
|---|
| 148 | G4double result, Za, Zb, Ma, Mb, sigma;
|
|---|
| 149 |
|
|---|
| 150 | Za = GetPlateFormationZone(energy,gamma,varAngle);
|
|---|
| 151 | Zb = GetGasFormationZone(energy,gamma,varAngle);
|
|---|
| 152 | Ma = GetPlateLinearPhotoAbs(energy);
|
|---|
| 153 | Mb = GetGasLinearPhotoAbs(energy);
|
|---|
| 154 | sigma = Ma*fPlateThick + Mb*fGasThick;
|
|---|
| 155 |
|
|---|
| 156 | G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
|
|---|
| 157 | G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
|
|---|
| 158 |
|
|---|
| 159 | G4complex Ha = std::pow(Ca,-fAlphaPlate);
|
|---|
| 160 | G4complex Hb = std::pow(Cb,-fAlphaGas);
|
|---|
| 161 | G4complex H = Ha*Hb;
|
|---|
| 162 | G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
|
|---|
| 163 | * G4double(fPlateNumber) ;
|
|---|
| 164 | G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
|
|---|
| 165 | * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
|
|---|
| 166 | // *(1.0 - std::pow(H,fPlateNumber)) ;
|
|---|
| 167 | G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
|
|---|
| 168 | // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
|
|---|
| 169 | result = 2.0*std::real(R);
|
|---|
| 170 | return result;
|
|---|
| 171 | */
|
|---|
| 172 | // numerically unstable result
|
|---|
| 173 |
|
|---|
| 174 | G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
|
|---|
| 175 |
|
|---|
| 176 | aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
|
|---|
| 177 | bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
|
|---|
| 178 | aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
|
|---|
| 179 | bMb = fGasThick*GetGasLinearPhotoAbs(energy);
|
|---|
| 180 | sigma = aMa*fPlateThick + bMb*fGasThick;
|
|---|
| 181 | Qa = std::exp(-0.5*aMa);
|
|---|
| 182 | Qb = std::exp(-0.5*bMb);
|
|---|
| 183 | Q = Qa*Qb;
|
|---|
| 184 |
|
|---|
| 185 | G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa) );
|
|---|
| 186 | G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb) );
|
|---|
| 187 | G4complex H = Ha*Hb;
|
|---|
| 188 | G4complex Hs = conj(H);
|
|---|
| 189 | D = 1.0 /( (1 - Q)*(1 - Q) +
|
|---|
| 190 | 4*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
|
|---|
| 191 | G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
|
|---|
| 192 | * G4double(fPlateNumber)*D;
|
|---|
| 193 | G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
|
|---|
| 194 | // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
|
|---|
| 195 | * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
|
|---|
| 196 | G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
|
|---|
| 197 | result = 2.0*std::real(R);
|
|---|
| 198 | return result;
|
|---|
| 199 |
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 |
|
|---|
| 203 | //
|
|---|
| 204 | //
|
|---|
| 205 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 206 |
|
|---|
| 207 |
|
|---|
| 208 |
|
|---|
| 209 |
|
|---|
| 210 |
|
|---|
| 211 |
|
|---|
| 212 |
|
|---|
| 213 |
|
|---|