// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // Unit test for coherent elastic models // // 18.05.07 V. Grichine // // #include "G4ios.hh" #include #include #include "globals.hh" #include "Randomize.hh" #include "G4UnitsTable.hh" #include #include #include "G4Element.hh" #include "G4NistManager.hh" #include "G4ParticleDefinition.hh" #include "G4PionPlus.hh" #include "G4PionMinus.hh" #include "G4MuonPlus.hh" #include "G4MuonMinus.hh" #include "G4Proton.hh" #include "G4Electron.hh" #include "G4Gamma.hh" #include "G4DynamicParticle.hh" #include "G4ParticleMomentum.hh" #include "G4VEmModel.hh" #include "G4KleinNishinaCompton.hh" #include "G4HeatedKleinNishinaCompton.hh" #include "G4PEEffectModel.hh" #include "G4PairProductionRelModel.hh" #include "G4BetheHeitlerModel.hh" using namespace std; int main() { G4int i, j, k, iMax; G4double x; G4double expXrad=0., g4Xrad; std::ofstream writef("angle.dat", std::ios::out ) ; writef.setf( std::ios::scientific, std::ios::floatfield ); G4Element* theElement; G4Material* theMaterial; G4NistManager* man = G4NistManager::Instance(); man->SetVerbose(1); G4cout << " 1 hydrogen" << G4endl; G4cout << " 2 helium" << G4endl; G4cout << " 4 berillium" << G4endl; G4cout << " 6 carbon" << G4endl; G4cout << " 7 nitrogen" << G4endl; G4cout << " 8 oxigen" << G4endl; G4cout << "13 aluminium" << G4endl; G4cout << "14 silicon" << G4endl; G4cout << "18 argon" << G4endl; G4cout << "26 iron" << G4endl; G4cout << "29 copper" << G4endl; G4cout << "48 cadmium" << G4endl; G4cout << "54 xenon" << G4endl; G4cout << "74 tugnsten" << G4endl; G4cout << "77 iridium" << G4endl; G4cout << "82 lead" << G4endl; G4cout << "92 uranium" << G4endl; G4int choice; // G4cin >> choice; choice = 6; switch (choice) { case 1: theElement = man->FindOrBuildElement("H"); theMaterial = man->FindOrBuildMaterial("G4_H"); g4Xrad = theMaterial->GetRadlen(); break; case 2: theElement = man->FindOrBuildElement("He"); theMaterial = man->FindOrBuildMaterial("G4_He"); g4Xrad = theMaterial->GetRadlen(); break; case 4: theElement = man->FindOrBuildElement("Be"); theMaterial = man->FindOrBuildMaterial("G4_Be"); g4Xrad = theMaterial->GetRadlen(); break; case 6: theElement = man->FindOrBuildElement("C"); theMaterial = man->FindOrBuildMaterial("G4_C"); g4Xrad = theMaterial->GetRadlen(); expXrad = 19.6*cm; break; case 7: theElement = man->FindOrBuildElement("N"); theMaterial = man->FindOrBuildMaterial("G4_N"); g4Xrad = theMaterial->GetRadlen(); break; case 8: theElement = man->FindOrBuildElement("O"); theMaterial = man->FindOrBuildMaterial("G4_O"); g4Xrad = theMaterial->GetRadlen(); break; case 13: theElement = man->FindOrBuildElement("Al"); theMaterial = man->FindOrBuildMaterial("G4_Al"); g4Xrad = theMaterial->GetRadlen(); expXrad = 8.9*cm; break; case 14: theElement = man->FindOrBuildElement("Si"); theMaterial = man->FindOrBuildMaterial("G4_Si"); g4Xrad = theMaterial->GetRadlen(); break; case 18: theElement = man->FindOrBuildElement("Ar"); theMaterial = man->FindOrBuildMaterial("G4_Ar"); break; case 26: theElement = man->FindOrBuildElement("Fe"); theMaterial = man->FindOrBuildMaterial("G4_Fe"); g4Xrad = theMaterial->GetRadlen(); expXrad = 1.76*cm; break; case 29: theElement = man->FindOrBuildElement("Cu"); theMaterial = man->FindOrBuildMaterial("G4_Cu"); g4Xrad = theMaterial->GetRadlen(); break; case 48: theElement = man->FindOrBuildElement("Cd"); theMaterial = man->FindOrBuildMaterial("G4_Cd"); g4Xrad = theMaterial->GetRadlen(); break; case 54: theElement = man->FindOrBuildElement("Xe"); theMaterial = man->FindOrBuildMaterial("G4_Xe"); g4Xrad = theMaterial->GetRadlen(); break; case 74: theElement = man->FindOrBuildElement("W"); theMaterial = man->FindOrBuildMaterial("G4_W"); g4Xrad = theMaterial->GetRadlen(); expXrad = 0.35*cm; break; case 77: theElement = man->FindOrBuildElement("Ir"); theMaterial = man->FindOrBuildMaterial("G4_Ir"); g4Xrad = theMaterial->GetRadlen(); break; case 82: theElement = man->FindOrBuildElement("Pb"); theMaterial = man->FindOrBuildMaterial("G4_Pb"); g4Xrad = theMaterial->GetRadlen(); expXrad = 0.56*cm; break; case 92: theElement = man->FindOrBuildElement("U"); theMaterial = man->FindOrBuildMaterial("G4_U"); g4Xrad = theMaterial->GetRadlen(); expXrad = 0.35*cm; break; } // Particle definition G4cout << " 0 gamma" << G4endl; G4cout << " 1 electron" << G4endl; G4cout << " 2 proton" << G4endl; G4cout << " 3 pion+" << G4endl; G4cout << " 4 pion-" << G4endl; G4cout << " 4 muon+" << G4endl; G4cout << " 5 muon-" << G4endl; // G4cin >> choice; choice = 0; G4ParticleDefinition* theParticleDefinition; switch (choice) { case 0: theParticleDefinition = G4Gamma::GammaDefinition(); break; case 1: theParticleDefinition = G4Electron::ElectronDefinition(); break; case 2: theParticleDefinition = G4Proton::ProtonDefinition(); break; case 3: theParticleDefinition = G4PionPlus::PionPlusDefinition(); break; case 4: theParticleDefinition = G4PionMinus::PionMinusDefinition(); break; case 5: theParticleDefinition = G4MuonPlus::MuonPlusDefinition(); break; case 6: theParticleDefinition = G4MuonMinus::MuonMinusDefinition(); break; } G4double energyMscXR, xsc, kinEnergy; // kinEnergy = 8*GeV; // 25.0*GeV; kinEnergy = 25.0*GeV; G4VEmModel* comp = new G4KleinNishinaCompton(); // G4VEmModel* comp = new G4HeatedKleinNishinaCompton(); G4VEmModel* photo = new G4PEEffectModel(); G4VEmModel* pair = new G4PairProductionRelModel(theParticleDefinition,"pp"); G4VEmModel* bhpair = new G4BetheHeitlerModel(theParticleDefinition,"bhpp"); G4DynamicParticle* theDynamicParticle = new G4DynamicParticle(theParticleDefinition, G4ParticleMomentum(0.,0.,1.), kinEnergy); G4double m1 = theParticleDefinition->GetPDGMass(); G4double plab = theDynamicParticle->GetTotalMomentum(); G4cout <<"lab momentum, plab = "<GetZ()); G4int A = G4int(theElement->GetN()+0.5); G4double step = 4.10*mm; step = expXrad; G4double m2 = man->GetAtomicMassAmu(Z)*GeV; // G4double m2 = man->GetAtomicMass( Z, A); G4cout <<" target mass, m2 = "<ComputeCrossSectionPerAtom(theParticleDefinition, energyMscXR, G4double(Z ) ); iMax = 130; writef<ComputeCrossSectionPerAtom(theParticleDefinition,energyMscXR,G4double(Z ) ); // xsc = photo->ComputeCrossSectionPerAtom(theParticleDefinition, energyMscXR, G4double(Z ) ); // xsc = pair->ComputeCrossSectionPerAtom(theParticleDefinition, energyMscXR, G4double(Z ) ); xsc = bhpair->ComputeCrossSectionPerAtom(theParticleDefinition, energyMscXR, G4double(Z ) ); G4cout<