// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4BGGNucleonInelasticXS.cc,v 1.9 2010/10/12 06:16:19 dennis Exp $ // GEANT4 tag $Name: hadr-cross-V09-03-12 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4BGGNucleonInelasticXS // // Author: Vladimir Ivanchenko // // Creation date: 13.03.2007 // Modifications: // // // ------------------------------------------------------------------- // #include "G4BGGNucleonInelasticXS.hh" #include "G4GlauberGribovCrossSection.hh" #include "G4NucleonNuclearCrossSection.hh" #include "G4HadronNucleonXsc.hh" #include "G4Proton.hh" #include "G4Neutron.hh" #include "G4NistManager.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4BGGNucleonInelasticXS::G4BGGNucleonInelasticXS(const G4ParticleDefinition* p) { verboseLevel = 0; fGlauberEnergy = 91.*GeV; fLowEnergy = 20.*MeV; fNucleon = 0; fGlauber = 0; fHadron = 0; particle = p; isProton = false; isInitialized = false; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4BGGNucleonInelasticXS::~G4BGGNucleonInelasticXS() { delete fGlauber; delete fNucleon; delete fHadron; } G4double G4BGGNucleonInelasticXS::GetZandACrossSection(const G4DynamicParticle* dp, G4int Z, G4int A, G4double) { G4double cross = 0.0; G4double ekin = dp->GetKineticEnergy(); // G4int iz = G4int(Z); if(Z > 92) Z = 92; if(ekin <= fLowEnergy) { cross = theCoulombFac[Z]*CoulombFactor(ekin, A); } else if(Z == 1) { if( A < 2) { fHadron->GetHadronNucleonXscNS(dp, G4Proton::Proton()); cross = fHadron->GetInelasticHadronNucleonXsc(); } else { fHadron->GetHadronNucleonXscNS(dp, G4Proton::Proton()); cross = fHadron->GetInelasticHadronNucleonXsc(); fHadron->GetHadronNucleonXscNS(dp, G4Neutron::Neutron()); cross += fHadron->GetInelasticHadronNucleonXsc(); } } else if(ekin > fGlauberEnergy) { cross = theGlauberFac[Z]*fGlauber->GetInelasticGlauberGribov(dp, Z, A); } else { cross = fNucleon->GetZandACrossSection(dp, Z, A); } if(verboseLevel > 1) G4cout << "G4BGGNucleonInelasticXS::GetCrossSection for " << dp->GetDefinition()->GetParticleName() << " Ekin(GeV)= " << dp->GetKineticEnergy() << " in nucleus Z= " << Z << " A= " << A << " XS(b)= " << cross/barn << G4endl; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void G4BGGNucleonInelasticXS::BuildPhysicsTable(const G4ParticleDefinition& p) { if(&p == G4Proton::Proton() || &p == G4Neutron::Neutron()) { particle = &p; Initialise(); } else { G4cout << "### G4BGGNucleonInelasticXS WARNING: is not applicable to " << p.GetParticleName() << G4endl; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void G4BGGNucleonInelasticXS::DumpPhysicsTable(const G4ParticleDefinition&) { G4cout << "G4BGGNucleonInelasticXS:"<BuildPhysicsTable(*particle); fGlauber->BuildPhysicsTable(*particle); if(particle == G4Proton::Proton()) isProton = true; G4ParticleDefinition* part = const_cast(particle); G4ThreeVector mom(0.0,0.0,1.0); G4DynamicParticle dp(part, mom, fGlauberEnergy); G4NistManager* nist = G4NistManager::Instance(); G4int A = G4lrint(nist->GetAtomicMassAmu(2)); G4double csup, csdn; if(verboseLevel > 0) G4cout << "### G4BGGNucleonInelasticXS::Initialise for " << particle->GetParticleName() << G4endl; for(G4int iz=2; iz<93; iz++) { G4double Z = G4double(iz); A = G4lrint(nist->GetAtomicMassAmu(iz)); csup = fGlauber->GetInelasticGlauberGribov(&dp, iz, A); // csdn = fNucleon->GetIsoZACrossSection(&dp, Z, A); csdn = fNucleon->GetZandACrossSection(&dp, iz, A); theGlauberFac[iz] = csdn/csup; if(verboseLevel > 0) G4cout << "Z= " << Z << " A= " << A << " factor= " << theGlauberFac[iz] << G4endl; } dp.SetKineticEnergy(fLowEnergy); fHadron->GetHadronNucleonXscNS(&dp, G4Proton::Proton()); theCoulombFac[1] = fHadron->GetInelasticHadronNucleonXsc()/CoulombFactor(fLowEnergy,1); for(G4int iz=2; iz<93; iz++) { G4double Z = G4double(iz); A = G4lrint(nist->GetAtomicMassAmu(iz)); theCoulombFac[iz] = fNucleon->GetZandACrossSection(&dp, iz, A)/CoulombFactor(fLowEnergy,A); if(verboseLevel > 0) G4cout << "Z= " << Z << " A= " << A << " factor= " << theCoulombFac[iz] << G4endl; } } G4double G4BGGNucleonInelasticXS::CoulombFactor(G4double kinEnergy, G4int A) { G4double res= 0.0; if(kinEnergy <= DBL_MIN) return res; else if (A < 2) return kinEnergy*kinEnergy; G4double elog = std::log10(kinEnergy/GeV); G4double aa = A; // from G4ProtonInelasticCrossSection if(isProton) { G4double f1 = 8.0 - 8.0/aa - 0.008*aa; G4double f2 = 2.34 - 5.4/aa - 0.0028*aa; res = 1.0/(1.0 + std::exp(-f1*(elog + f2))); f1 = 5.6 - 0.016*aa; f2 = 1.37 + 1.37/aa; res *= ( 1.0 + (0.8 + 18./aa - 0.002*aa)/(1.0 + std::exp(f1*(elog + f2)))); } else { G4double p3 = 0.6 + 13./aa - 0.0005*aa; G4double p4 = 7.2449 - 0.018242*aa; G4double p5 = 1.36 + 1.8/aa + 0.0005*aa; G4double p6 = 1. + 200./aa + 0.02*aa; G4double p7 = 3.0 - (aa-70.)*(aa-200.)/11000.; res = (1.+p3/(1. + std::exp(p4*(elog+p5))))/(1.+std::exp(-p6*(elog+p7))); } return res; }