// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * * // * Parts of this code which have been developed by QinetiQ Ltd * // * under contract to the European Space Agency (ESA) are the * // * intellectual property of ESA. Rights to use, copy, modify and * // * redistribute this software for general public use are granted * // * in compliance with any licensing, distribution and development * // * policy adopted by the Geant4 Collaboration. This code has been * // * written by QinetiQ Ltd for the European Space Agency, under ESA * // * contract 17191/03/NL/LvH (Aurora Programme). * // * * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // MODULE: G4EMDissociationCrossSection.cc // // Version: B.1 // Date: 15/04/04 // Author: P R Truscott // Organisation: QinetiQ Ltd, UK // Customer: ESA/ESTEC, NOORDWIJK // Contract: 17191/03/NL/LvH // // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // CHANGE HISTORY // -------------- // // 17 October 2003, P R Truscott, QinetiQ Ltd, UK // Created. // // 15 March 2004, P R Truscott, QinetiQ Ltd, UK // Beta release // // 30. May 2005, J.P. Wellisch removed a compilation warning on gcc 3.4 for // geant4 7.1. // // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ////////////////////////////////////////////////////////////////////////////// // #include "G4EMDissociationCrossSection.hh" #include "G4PhysicsFreeVector.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" #include "G4HadTmpUtil.hh" #include "globals.hh" G4EMDissociationCrossSection::G4EMDissociationCrossSection () { // // This function makes use of the class which can sample the virtual photon // spectrum, G4EMDissociationSpectrum. // thePhotonSpectrum = new G4EMDissociationSpectrum(); // // // Define other constants. // r0 = 1.18 * fermi; J = 36.8 * MeV; Qprime = 17.0 * MeV; epsilon = 0.0768; xd = 0.25; } ////////////////////////////////////////////////////////////////////////////// // G4EMDissociationCrossSection::~G4EMDissociationCrossSection() { delete thePhotonSpectrum; } ///////////////////////////////////////////////////////////////////////////// // G4bool G4EMDissociationCrossSection::IsIsoApplicable(const G4DynamicParticle* theDynamicParticle, G4int /*ZZ*/, G4int AA) { // // The condition for the applicability of this class is that the projectile // must be an ion and the target must have more than one nucleon. In reality // the value of A for either the projectile or target could be much higher, // since for cases where both he projectile and target are medium to small // Z, the probability of the EMD process is, I think, VERY small. // if (G4ParticleTable::GetParticleTable()->GetIonTable()-> IsIon(theDynamicParticle->GetDefinition()) && AA > 1) return true; else return false; } G4bool G4EMDissociationCrossSection::IsApplicable (const G4DynamicParticle* theDynamicParticle, const G4Element* theElement) { return IsIsoApplicable(theDynamicParticle, 0, G4lrint(theElement->GetN())); } ////////////////////////////////////////////////////////////////////////////// // G4double G4EMDissociationCrossSection::GetCrossSection (const G4DynamicParticle* theDynamicParticle, const G4Element* theElement, G4double temperature) { G4int nIso = theElement->GetNumberOfIsotopes(); G4double crossSection = 0; if (nIso) { G4double sig; G4IsotopeVector* isoVector = theElement->GetIsotopeVector(); G4double* abundVector = theElement->GetRelativeAbundanceVector(); G4int ZZ; G4int AA; for (G4int i = 0; i < nIso; i++) { ZZ = (*isoVector)[i]->GetZ(); AA = (*isoVector)[i]->GetN(); sig = GetZandACrossSection(theDynamicParticle, ZZ, AA, temperature); crossSection += sig*abundVector[i]; } } else { G4int ZZ = G4lrint(theElement->GetZ()); G4int AA = G4lrint(theElement->GetN()); crossSection = GetZandACrossSection(theDynamicParticle, ZZ, AA, temperature); } return crossSection; } G4double G4EMDissociationCrossSection::GetZandACrossSection(const G4DynamicParticle *theDynamicParticle, G4int ZZ, G4int AA, G4double /*temperature*/) { // // Get relevant information about the projectile and target (A, Z) and // velocity of the projectile. // G4ParticleDefinition *definitionP = theDynamicParticle->GetDefinition(); G4double AP = definitionP->GetBaryonNumber(); G4double ZP = definitionP->GetPDGCharge(); G4double b = theDynamicParticle->Get4Momentum().beta(); // G4double bsq = b * b; G4double AT = AA; G4double ZT = ZZ; G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b); // // // Calculate the cross-section for the projectile and then the target. The // information is returned in a G4PhysicsFreeVector, which separates out the // cross-sections for the E1 and E2 moments of the virtual photon field, and // the energies (GDR and GQR). // G4PhysicsFreeVector *theProjectileCrossSections = GetCrossSectionForProjectile (AP, ZP, AT, ZT, b, bmin); G4double crossSection = (*theProjectileCrossSections)[0]+(*theProjectileCrossSections)[1]; delete theProjectileCrossSections; G4PhysicsFreeVector *theTargetCrossSections = GetCrossSectionForTarget (AP, ZP, AT, ZT, b, bmin); crossSection += (*theTargetCrossSections)[0]+(*theTargetCrossSections)[1]; delete theTargetCrossSections; return crossSection; } //////////////////////////////////////////////////////////////////////////////// // G4PhysicsFreeVector * G4EMDissociationCrossSection::GetCrossSectionForProjectile (G4double AP, G4double ZP, G4double /* AT */, G4double ZT, G4double b, G4double bmin) { // // // Use Wilson et al's approach to calculate the cross-sections due to the E1 // and E2 moments of the field at the giant dipole and quadrupole resonances // respectively, Note that the algorithm is traditionally applied to the // EMD break-up of the projectile in the field of the target, as is implemented // here. // // Initialise variables and calculate the energies for the GDR and GQR. // G4double AProot3 = std::pow(AP,1.0/3.0); G4double u = 3.0 * J / Qprime / AProot3; G4double R0 = r0 * AProot3; G4double E_GDR = hbarc / std::sqrt(0.7*amu_c2*R0*R0/8.0/J* (1.0 + u - (1.0 + epsilon + 3.0*u)/(1.0 + epsilon + u)*epsilon)); G4double E_GQR = 63.0 * MeV / AProot3; // // // Determine the virtual photon spectra at these energies. // G4double ZTsq = ZT * ZT; G4double nE1 = ZTsq * thePhotonSpectrum->GetGeneralE1Spectrum(E_GDR, b, bmin); G4double nE2 = ZTsq * thePhotonSpectrum->GetGeneralE2Spectrum(E_GQR, b, bmin); // // // Now calculate the cross-section of the projectile for interaction with the // E1 and E2 fields. // G4double sE1 = 60.0 * millibarn * MeV * (AP-ZP)*ZP/AP; G4double sE2 = 0.22 * microbarn / MeV * ZP * AProot3 * AProot3; if (AP > 100.0) sE2 *= 0.9; else if (AP > 40.0) sE2 *= 0.6; else sE2 *= 0.3; // // // ... and multiply with the intensity of the virtual photon spectra to get // the probability of interaction. // G4PhysicsFreeVector *theCrossSectionVector = new G4PhysicsFreeVector(2); theCrossSectionVector->PutValue(0, E_GDR, sE1*nE1); theCrossSectionVector->PutValue(1, E_GQR, sE2*nE2*E_GQR*E_GQR); return theCrossSectionVector; } //////////////////////////////////////////////////////////////////////////////// // G4PhysicsFreeVector * G4EMDissociationCrossSection::GetCrossSectionForTarget (G4double AP, G4double ZP, G4double AT, G4double ZT, G4double b, G4double bmin) { // // This is a cheaky little member function to calculate the probability of // EMD for the target in the field of the projectile ... just by reversing the // A and Z's for the participants. // return GetCrossSectionForProjectile (AT, ZT, AP, ZP, b, bmin); } G4double G4EMDissociationCrossSection::GetWilsonProbabilityForProtonDissociation(G4double A, G4double Z) { // // This is a simple algorithm to choose whether a proton or neutron is ejected // from the nucleus in the EMD interaction. // G4double p = 0.0; if (Z < 6.0) p = 0.5; else if (Z < 8.0) p = 0.6; else if (Z < 14.0) p = 0.7; else { G4double p1 = (G4double) Z / (G4double) A; G4double p2 = 1.95*std::exp(-0.075*Z); if (p1 < p2) p = p1; else p = p2; } return p; }