| [968] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // 24.11.08 V. Grichine - first implementation
|
|---|
| 27 | //
|
|---|
| 28 |
|
|---|
| 29 | #include "G4GGNuclNuclCrossSection.hh"
|
|---|
| 30 |
|
|---|
| 31 | #include "G4ParticleTable.hh"
|
|---|
| 32 | #include "G4IonTable.hh"
|
|---|
| 33 | #include "G4ParticleDefinition.hh"
|
|---|
| [1340] | 34 | #include "G4HadTmpUtil.hh"
|
|---|
| [968] | 35 |
|
|---|
| 36 |
|
|---|
| 37 | G4GGNuclNuclCrossSection::G4GGNuclNuclCrossSection()
|
|---|
| 38 | : fUpperLimit( 100000 * GeV ),
|
|---|
| [1055] | 39 | fLowerLimit( 0.1 * MeV ),
|
|---|
| [1347] | 40 | fRadiusConst( 1.08*fermi ), // 1.1, 1.3 ?
|
|---|
| 41 | fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
|
|---|
| 42 | fDiffractionXsc(0.0), fHadronNucleonXsc(0.0)
|
|---|
| [968] | 43 | {
|
|---|
| 44 | theProton = G4Proton::Proton();
|
|---|
| 45 | theNeutron = G4Neutron::Neutron();
|
|---|
| 46 | }
|
|---|
| 47 |
|
|---|
| 48 |
|
|---|
| 49 | G4GGNuclNuclCrossSection::~G4GGNuclNuclCrossSection()
|
|---|
| [1340] | 50 | {}
|
|---|
| [968] | 51 |
|
|---|
| 52 |
|
|---|
| 53 | G4bool
|
|---|
| 54 | G4GGNuclNuclCrossSection::IsApplicable(const G4DynamicParticle* aDP,
|
|---|
| [1340] | 55 | const G4Element* anElement)
|
|---|
| [968] | 56 | {
|
|---|
| [1340] | 57 | G4int Z = G4lrint(anElement->GetZ());
|
|---|
| 58 | G4int N = G4lrint(anElement->GetN());
|
|---|
| 59 | return IsIsoApplicable(aDP, Z, N);
|
|---|
| [968] | 60 | }
|
|---|
| 61 |
|
|---|
| [1340] | 62 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 63 | //
|
|---|
| 64 | //
|
|---|
| 65 |
|
|---|
| 66 | G4bool
|
|---|
| [1340] | 67 | G4GGNuclNuclCrossSection::IsIsoApplicable(const G4DynamicParticle* aDP,
|
|---|
| 68 | G4int Z, G4int)
|
|---|
| [968] | 69 | {
|
|---|
| [1340] | 70 | G4bool applicable = false;
|
|---|
| [968] | 71 | G4double kineticEnergy = aDP->GetKineticEnergy();
|
|---|
| 72 |
|
|---|
| [1340] | 73 | if (kineticEnergy >= fLowerLimit && Z > 1) applicable = true;
|
|---|
| [968] | 74 | return applicable;
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| [1340] | 77 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 78 | //
|
|---|
| [1340] | 79 | // Calculates total and inelastic Xsc, derives elastic as total - inelastic
|
|---|
| 80 | // accordong to Glauber model with Gribov correction calculated in the dipole
|
|---|
| 81 | // approximation on light cone. Gaussian density helps to calculate rest
|
|---|
| 82 | // integrals of the model. [1] B.Z. Kopeliovich, nucl-th/0306044
|
|---|
| [968] | 83 |
|
|---|
| 84 |
|
|---|
| 85 | G4double G4GGNuclNuclCrossSection::
|
|---|
| [1340] | 86 | GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement,
|
|---|
| 87 | G4double T)
|
|---|
| [968] | 88 | {
|
|---|
| [1340] | 89 | G4int Z = G4lrint(anElement->GetZ());
|
|---|
| 90 | G4int N = G4lrint(anElement->GetN());
|
|---|
| 91 | return GetZandACrossSection(aParticle, Z, N, T);
|
|---|
| [968] | 92 | }
|
|---|
| 93 |
|
|---|
| [1340] | 94 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 95 | //
|
|---|
| [1340] | 96 | // Calculates total and inelastic Xsc, derives elastic as total - inelastic
|
|---|
| 97 | // accordong to Glauber model with Gribov correction calculated in the dipole
|
|---|
| 98 | // approximation on light cone. Gaussian density of point-like nucleons helps
|
|---|
| 99 | // to calculate rest integrals of the model. [1] B.Z. Kopeliovich,
|
|---|
| 100 | // nucl-th/0306044 + simplification above
|
|---|
| [968] | 101 |
|
|---|
| 102 |
|
|---|
| 103 | G4double G4GGNuclNuclCrossSection::
|
|---|
| [1340] | 104 | GetZandACrossSection(const G4DynamicParticle* aParticle,
|
|---|
| 105 | G4int tZ, G4int tA, G4double)
|
|---|
| [968] | 106 | {
|
|---|
| [1340] | 107 | G4double xsection;
|
|---|
| 108 | G4double sigma;
|
|---|
| 109 | G4double cofInelastic = 2.4;
|
|---|
| 110 | G4double cofTotal = 2.0;
|
|---|
| 111 | G4double nucleusSquare;
|
|---|
| 112 | G4double cB;
|
|---|
| 113 | G4double ratio;
|
|---|
| [968] | 114 |
|
|---|
| 115 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 116 | G4double pA = aParticle->GetDefinition()->GetBaryonNumber();
|
|---|
| 117 |
|
|---|
| 118 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 119 | pTkin /= pA;
|
|---|
| 120 |
|
|---|
| 121 | G4double pN = pA - pZ;
|
|---|
| 122 | if( pN < 0. ) pN = 0.;
|
|---|
| 123 |
|
|---|
| 124 | G4double tN = tA - tZ;
|
|---|
| 125 | if( tN < 0. ) tN = 0.;
|
|---|
| 126 |
|
|---|
| 127 | G4double tR = GetNucleusRadius(tA);
|
|---|
| 128 | G4double pR = GetNucleusRadius(pA);
|
|---|
| 129 |
|
|---|
| [1340] | 130 | cB = GetCoulombBarier(aParticle, G4double(tZ), G4double(tA), pR, tR);
|
|---|
| 131 | if (cB > 0.) {
|
|---|
| [1055] | 132 |
|
|---|
| 133 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| [968] | 134 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| 135 |
|
|---|
| [1055] | 136 | nucleusSquare = cofTotal*pi*( pR*pR + tR*tR ); // basically 2piRR
|
|---|
| [968] | 137 |
|
|---|
| [1055] | 138 | ratio = sigma/nucleusSquare;
|
|---|
| 139 | xsection = nucleusSquare*std::log( 1. + ratio );
|
|---|
| 140 | fTotalXsc = xsection;
|
|---|
| 141 | fTotalXsc *= cB;
|
|---|
| [968] | 142 |
|
|---|
| [1055] | 143 | fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
|
|---|
| [968] | 144 |
|
|---|
| [1055] | 145 | fInelasticXsc *= cB;
|
|---|
| 146 | fElasticXsc = fTotalXsc - fInelasticXsc;
|
|---|
| [968] | 147 |
|
|---|
| [1055] | 148 | // if (fElasticXsc < DBL_MIN) fElasticXsc = DBL_MIN;
|
|---|
| 149 | /*
|
|---|
| 150 | G4double difratio = ratio/(1.+ratio);
|
|---|
| 151 |
|
|---|
| 152 | fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
|
|---|
| 153 | */
|
|---|
| 154 | // production to be checked !!! edit MK xsc
|
|---|
| 155 |
|
|---|
| [1228] | 156 | //sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscMK(theProton, pTkin, theProton) +
|
|---|
| 157 | // (pZ*tN+pN*tZ)*GetHadronNucleonXscMK(theProton, pTkin, theNeutron);
|
|---|
| 158 |
|
|---|
| 159 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| 160 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| [968] | 161 |
|
|---|
| [1055] | 162 | ratio = sigma/nucleusSquare;
|
|---|
| 163 | fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
|
|---|
| [968] | 164 |
|
|---|
| [1055] | 165 | if (fElasticXsc < 0.) fElasticXsc = 0.;
|
|---|
| 166 | }
|
|---|
| 167 | else
|
|---|
| 168 | {
|
|---|
| 169 | fInelasticXsc = 0.;
|
|---|
| 170 | fTotalXsc = 0.;
|
|---|
| 171 | fElasticXsc = 0.;
|
|---|
| 172 | fProductionXsc = 0.;
|
|---|
| 173 | }
|
|---|
| 174 | return fInelasticXsc; // xsection;
|
|---|
| 175 | }
|
|---|
| [968] | 176 |
|
|---|
| [1340] | 177 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [1055] | 178 | //
|
|---|
| 179 | //
|
|---|
| 180 |
|
|---|
| 181 | G4double G4GGNuclNuclCrossSection::
|
|---|
| [1340] | 182 | GetCoulombBarier(const G4DynamicParticle* aParticle, G4double tZ, G4double tA,
|
|---|
| 183 | G4double pR, G4double tR)
|
|---|
| [1055] | 184 | {
|
|---|
| 185 | G4double ratio;
|
|---|
| 186 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 187 |
|
|---|
| 188 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 189 | // G4double pPlab = aParticle->GetTotalMomentum();
|
|---|
| 190 | G4double pM = aParticle->GetDefinition()->GetPDGMass();
|
|---|
| 191 | // G4double tM = tZ*proton_mass_c2 + (tA-tZ)*neutron_mass_c2; // ~ 1% accuracy
|
|---|
| 192 | G4double tM = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( G4int(tZ), G4int(tA) );
|
|---|
| 193 | G4double pElab = pTkin + pM;
|
|---|
| 194 | G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM);
|
|---|
| 195 | // G4double pPcm = pPlab*tM/totEcm;
|
|---|
| 196 | // G4double pTcm = std::sqrt(pM*pM + pPcm*pPcm) - pM;
|
|---|
| 197 | G4double totTcm = totEcm - pM -tM;
|
|---|
| 198 |
|
|---|
| 199 | G4double bC = fine_structure_const*hbarc*pZ*tZ;
|
|---|
| 200 | bC /= pR + tR;
|
|---|
| 201 | bC /= 2.; // 4., 2. parametrisation cof ??? vmg
|
|---|
| 202 |
|
|---|
| 203 | // G4cout<<"pTkin = "<<pTkin/GeV<<"; pPlab = "
|
|---|
| 204 | // <<pPlab/GeV<<"; bC = "<<bC/GeV<<"; pTcm = "<<pTcm/GeV<<G4endl;
|
|---|
| 205 |
|
|---|
| 206 | if( totTcm <= bC ) ratio = 0.;
|
|---|
| 207 | else ratio = 1. - bC/totTcm;
|
|---|
| 208 |
|
|---|
| 209 | // if(ratio < DBL_MIN) ratio = DBL_MIN;
|
|---|
| 210 | if( ratio < 0.) ratio = 0.;
|
|---|
| 211 |
|
|---|
| 212 | // G4cout <<"ratio = "<<ratio<<G4endl;
|
|---|
| 213 | return ratio;
|
|---|
| [968] | 214 | }
|
|---|
| 215 |
|
|---|
| [1055] | 216 |
|
|---|
| [968] | 217 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 218 | //
|
|---|
| 219 | // Return single-diffraction/inelastic cross-section ratio
|
|---|
| 220 |
|
|---|
| 221 | G4double G4GGNuclNuclCrossSection::
|
|---|
| 222 | GetRatioSD(const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
|
|---|
| 223 | {
|
|---|
| 224 | G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
|
|---|
| 225 |
|
|---|
| 226 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 227 | G4double pA = aParticle->GetDefinition()->GetBaryonNumber();
|
|---|
| 228 |
|
|---|
| 229 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 230 | pTkin /= pA;
|
|---|
| 231 |
|
|---|
| 232 | G4double pN = pA - pZ;
|
|---|
| 233 | if( pN < 0. ) pN = 0.;
|
|---|
| 234 |
|
|---|
| 235 | G4double tN = tA - tZ;
|
|---|
| 236 | if( tN < 0. ) tN = 0.;
|
|---|
| 237 |
|
|---|
| 238 | G4double tR = GetNucleusRadius(tA);
|
|---|
| 239 | G4double pR = GetNucleusRadius(pA);
|
|---|
| 240 |
|
|---|
| 241 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| 242 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| 243 |
|
|---|
| 244 | nucleusSquare = cofTotal*pi*( pR*pR + tR*tR ); // basically 2piRR
|
|---|
| 245 | ratio = sigma/nucleusSquare;
|
|---|
| [1340] | 246 | fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
|
|---|
| [968] | 247 | G4double difratio = ratio/(1.+ratio);
|
|---|
| 248 |
|
|---|
| 249 | fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
|
|---|
| 250 |
|
|---|
| 251 | if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
|
|---|
| 252 | else ratio = 0.;
|
|---|
| 253 |
|
|---|
| 254 | return ratio;
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 258 | //
|
|---|
| [1340] | 259 | // Return quasi-elastic/inelastic cross-section ratio
|
|---|
| [968] | 260 |
|
|---|
| 261 | G4double G4GGNuclNuclCrossSection::
|
|---|
| 262 | GetRatioQE(const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
|
|---|
| 263 | {
|
|---|
| 264 | G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
|
|---|
| 265 |
|
|---|
| 266 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 267 | G4double pA = aParticle->GetDefinition()->GetBaryonNumber();
|
|---|
| 268 |
|
|---|
| 269 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 270 | pTkin /= pA;
|
|---|
| 271 |
|
|---|
| 272 | G4double pN = pA - pZ;
|
|---|
| 273 | if( pN < 0. ) pN = 0.;
|
|---|
| 274 |
|
|---|
| 275 | G4double tN = tA - tZ;
|
|---|
| 276 | if( tN < 0. ) tN = 0.;
|
|---|
| 277 |
|
|---|
| 278 | G4double tR = GetNucleusRadius(tA);
|
|---|
| 279 | G4double pR = GetNucleusRadius(pA);
|
|---|
| 280 |
|
|---|
| 281 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| 282 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| 283 |
|
|---|
| 284 | nucleusSquare = cofTotal*pi*( pR*pR + tR*tR ); // basically 2piRR
|
|---|
| 285 | ratio = sigma/nucleusSquare;
|
|---|
| [1340] | 286 | fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
|
|---|
| [968] | 287 |
|
|---|
| 288 | // sigma = GetHNinelasticXsc(aParticle, tA, tZ);
|
|---|
| 289 | ratio = sigma/nucleusSquare;
|
|---|
| [1340] | 290 | fProductionXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
|
|---|
| [968] | 291 |
|
|---|
| 292 | if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
|
|---|
| 293 | else ratio = 0.;
|
|---|
| 294 | if ( ratio < 0. ) ratio = 0.;
|
|---|
| 295 |
|
|---|
| 296 | return ratio;
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| [1340] | 299 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 300 | //
|
|---|
| 301 | // Returns hadron-nucleon Xsc according to differnt parametrisations:
|
|---|
| 302 | // [2] E. Levin, hep-ph/9710546
|
|---|
| 303 | // [3] U. Dersch, et al, hep-ex/9910052
|
|---|
| 304 | // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
|
|---|
| 305 |
|
|---|
| 306 | G4double
|
|---|
| 307 | G4GGNuclNuclCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle,
|
|---|
| [1340] | 308 | const G4Element* anElement)
|
|---|
| [968] | 309 | {
|
|---|
| [1340] | 310 | G4int At = G4lrint(anElement->GetN()); // number of nucleons
|
|---|
| 311 | G4int Zt = G4lrint(anElement->GetZ()); // number of protons
|
|---|
| 312 | return GetHadronNucleonXsc(aParticle, At, Zt);
|
|---|
| [968] | 313 | }
|
|---|
| 314 |
|
|---|
| 315 |
|
|---|
| 316 |
|
|---|
| 317 |
|
|---|
| [1340] | 318 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 319 | //
|
|---|
| 320 | // Returns hadron-nucleon Xsc according to differnt parametrisations:
|
|---|
| 321 | // [2] E. Levin, hep-ph/9710546
|
|---|
| 322 | // [3] U. Dersch, et al, hep-ex/9910052
|
|---|
| 323 | // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
|
|---|
| 324 |
|
|---|
| 325 | G4double
|
|---|
| 326 | G4GGNuclNuclCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle,
|
|---|
| [1340] | 327 | G4int At, G4int Zt)
|
|---|
| [968] | 328 | {
|
|---|
| 329 | G4double xsection = 0.;
|
|---|
| 330 |
|
|---|
| 331 | G4double targ_mass = G4ParticleTable::GetParticleTable()->
|
|---|
| [1340] | 332 | GetIonTable()->GetIonMass(Zt, At);
|
|---|
| [968] | 333 | targ_mass = 0.939*GeV; // ~mean neutron and proton ???
|
|---|
| 334 |
|
|---|
| [1340] | 335 | G4double proj_mass = aParticle->GetMass();
|
|---|
| [968] | 336 | G4double proj_momentum = aParticle->GetMomentum().mag();
|
|---|
| 337 | G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
|
|---|
| 338 |
|
|---|
| 339 | sMand /= GeV*GeV; // in GeV for parametrisation
|
|---|
| 340 | proj_momentum /= GeV;
|
|---|
| 341 | const G4ParticleDefinition* pParticle = aParticle->GetDefinition();
|
|---|
| 342 |
|
|---|
| 343 | if(pParticle == theNeutron) // as proton ???
|
|---|
| 344 | {
|
|---|
| [1340] | 345 | xsection = G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
|
|---|
| [968] | 346 | }
|
|---|
| 347 | else if(pParticle == theProton)
|
|---|
| 348 | {
|
|---|
| [1340] | 349 | xsection = G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
|
|---|
| [968] | 350 | }
|
|---|
| 351 |
|
|---|
| 352 | xsection *= millibarn;
|
|---|
| 353 | return xsection;
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 |
|
|---|
| [1340] | 357 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 358 | //
|
|---|
| 359 | // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
|
|---|
| 360 | // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
|
|---|
| 361 |
|
|---|
| 362 | G4double
|
|---|
| 363 | G4GGNuclNuclCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle,
|
|---|
| [1340] | 364 | const G4Element* anElement)
|
|---|
| [968] | 365 | {
|
|---|
| [1340] | 366 | G4int At = G4lrint(anElement->GetN()); // number of nucleons
|
|---|
| 367 | G4int Zt = G4lrint(anElement->GetZ()); // number of protons
|
|---|
| [968] | 368 | return GetHadronNucleonXscPDG( aParticle, At, Zt );
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 |
|
|---|
| [1340] | 372 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 373 | //
|
|---|
| 374 | // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
|
|---|
| 375 | // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
|
|---|
| 376 | // At = number of nucleons, Zt = number of protons
|
|---|
| 377 |
|
|---|
| 378 | G4double
|
|---|
| 379 | G4GGNuclNuclCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle,
|
|---|
| [1340] | 380 | G4int At, G4int Zt)
|
|---|
| [968] | 381 | {
|
|---|
| 382 | G4double xsection = 0.;
|
|---|
| 383 |
|
|---|
| 384 | G4double Nt = At-Zt; // number of neutrons
|
|---|
| 385 | if (Nt < 0.) Nt = 0.;
|
|---|
| 386 |
|
|---|
| 387 | G4double targ_mass = G4ParticleTable::GetParticleTable()->
|
|---|
| [1340] | 388 | GetIonTable()->GetIonMass(Zt, At);
|
|---|
| [968] | 389 | targ_mass = 0.939*GeV; // ~mean neutron and proton ???
|
|---|
| 390 |
|
|---|
| 391 | G4double proj_mass = aParticle->GetMass();
|
|---|
| 392 | G4double proj_momentum = aParticle->GetMomentum().mag();
|
|---|
| 393 | G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
|
|---|
| 394 | sMand /= GeV*GeV; // in GeV for parametrisation
|
|---|
| 395 |
|
|---|
| 396 | // General PDG fit constants
|
|---|
| 397 |
|
|---|
| 398 | G4double s0 = 5.38*5.38; // in Gev^2
|
|---|
| 399 | G4double eta1 = 0.458;
|
|---|
| 400 | G4double eta2 = 0.458;
|
|---|
| 401 | G4double B = 0.308;
|
|---|
| 402 |
|
|---|
| 403 | const G4ParticleDefinition* pParticle = aParticle->GetDefinition();
|
|---|
| 404 |
|
|---|
| 405 | if(pParticle == theNeutron) // proton-neutron fit
|
|---|
| 406 | {
|
|---|
| [1340] | 407 | xsection = G4double(Zt)*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 408 | + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
|
|---|
| 409 | xsection += Nt*(35.45 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 410 | + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
|
|---|
| [968] | 411 | }
|
|---|
| 412 | else if(pParticle == theProton)
|
|---|
| 413 | {
|
|---|
| [1340] | 414 | xsection = G4double(Zt)*(35.45 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 415 | + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
|
|---|
| [968] | 416 |
|
|---|
| [1340] | 417 | xsection += Nt*(35.80 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 418 | + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
|
|---|
| [968] | 419 | }
|
|---|
| 420 | xsection *= millibarn; // parametrised in mb
|
|---|
| 421 | return xsection;
|
|---|
| 422 | }
|
|---|
| 423 |
|
|---|
| 424 |
|
|---|
| [1340] | 425 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 426 | //
|
|---|
| 427 | // Returns nucleon-nucleon cross-section based on N. Starkov parametrisation of
|
|---|
| 428 | // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
|
|---|
| 429 | // projectile nucleon is pParticle with pTkin shooting target nucleon tParticle
|
|---|
| 430 |
|
|---|
| 431 | G4double
|
|---|
| [1340] | 432 | G4GGNuclNuclCrossSection::GetHadronNucleonXscNS(G4ParticleDefinition* pParticle,
|
|---|
| [968] | 433 | G4double pTkin,
|
|---|
| 434 | G4ParticleDefinition* tParticle)
|
|---|
| 435 | {
|
|---|
| 436 | G4double xsection(0), Delta, A0, B0;
|
|---|
| 437 | G4double hpXsc(0);
|
|---|
| 438 | G4double hnXsc(0);
|
|---|
| 439 |
|
|---|
| [1340] | 440 | G4double targ_mass = tParticle->GetPDGMass();
|
|---|
| 441 | G4double proj_mass = pParticle->GetPDGMass();
|
|---|
| [968] | 442 |
|
|---|
| 443 | G4double proj_energy = proj_mass + pTkin;
|
|---|
| 444 | G4double proj_momentum = std::sqrt(pTkin*(pTkin+2*proj_mass));
|
|---|
| 445 |
|
|---|
| 446 | G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
|
|---|
| 447 |
|
|---|
| 448 | sMand /= GeV*GeV; // in GeV for parametrisation
|
|---|
| 449 | proj_momentum /= GeV;
|
|---|
| 450 | proj_energy /= GeV;
|
|---|
| 451 | proj_mass /= GeV;
|
|---|
| 452 |
|
|---|
| 453 | // General PDG fit constants
|
|---|
| 454 |
|
|---|
| 455 | // G4double s0 = 5.38*5.38; // in Gev^2
|
|---|
| 456 | // G4double eta1 = 0.458;
|
|---|
| 457 | // G4double eta2 = 0.458;
|
|---|
| 458 | // G4double B = 0.308;
|
|---|
| 459 |
|
|---|
| 460 | if( proj_momentum >= 10. ) // high energy: pp = nn = np
|
|---|
| 461 | // if( proj_momentum >= 2.)
|
|---|
| 462 | {
|
|---|
| 463 | Delta = 1.;
|
|---|
| [1340] | 464 | if (proj_energy < 40.) Delta = 0.916+0.0021*proj_energy;
|
|---|
| [968] | 465 |
|
|---|
| [1340] | 466 | if (proj_momentum >= 10.) {
|
|---|
| 467 | B0 = 7.5;
|
|---|
| 468 | A0 = 100. - B0*std::log(3.0e7);
|
|---|
| [968] | 469 |
|
|---|
| [1340] | 470 | xsection = A0 + B0*std::log(proj_energy) - 11
|
|---|
| 471 | + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
|
|---|
| 472 | 0.93827*0.93827,-0.165); // mb
|
|---|
| [968] | 473 | }
|
|---|
| 474 | }
|
|---|
| 475 | else // low energy pp = nn != np
|
|---|
| 476 | {
|
|---|
| 477 | if(pParticle == tParticle) // pp or nn // nn to be pp
|
|---|
| 478 | {
|
|---|
| 479 | if( proj_momentum < 0.73 )
|
|---|
| 480 | {
|
|---|
| 481 | hnXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
|
|---|
| 482 | }
|
|---|
| 483 | else if( proj_momentum < 1.05 )
|
|---|
| 484 | {
|
|---|
| 485 | hnXsc = 23 + 40*(std::log(proj_momentum/0.73))*
|
|---|
| 486 | (std::log(proj_momentum/0.73));
|
|---|
| 487 | }
|
|---|
| 488 | else // if( proj_momentum < 10. )
|
|---|
| 489 | {
|
|---|
| 490 | hnXsc = 39.0 +
|
|---|
| 491 | 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
|
|---|
| 492 | }
|
|---|
| 493 | xsection = hnXsc;
|
|---|
| 494 | }
|
|---|
| 495 | else // pn to be np
|
|---|
| 496 | {
|
|---|
| 497 | if( proj_momentum < 0.8 )
|
|---|
| 498 | {
|
|---|
| 499 | hpXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
|
|---|
| 500 | }
|
|---|
| 501 | else if( proj_momentum < 1.4 )
|
|---|
| 502 | {
|
|---|
| 503 | hpXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
|
|---|
| 504 | }
|
|---|
| 505 | else // if( proj_momentum < 10. )
|
|---|
| 506 | {
|
|---|
| 507 | hpXsc = 33.3+
|
|---|
| 508 | 20.8*(std::pow(proj_momentum,2.0)-1.35)/
|
|---|
| 509 | (std::pow(proj_momentum,2.50)+0.95);
|
|---|
| 510 | }
|
|---|
| 511 | xsection = hpXsc;
|
|---|
| 512 | }
|
|---|
| 513 | }
|
|---|
| 514 | xsection *= millibarn; // parametrised in mb
|
|---|
| 515 | return xsection;
|
|---|
| 516 | }
|
|---|
| 517 |
|
|---|
| [1340] | 518 | /////////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 519 | //
|
|---|
| 520 | // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
|
|---|
| 521 |
|
|---|
| 522 | G4double
|
|---|
| 523 | G4GGNuclNuclCrossSection::GetHNinelasticXscVU(const G4DynamicParticle* aParticle,
|
|---|
| [1340] | 524 | G4int At, G4int Zt)
|
|---|
| [968] | 525 | {
|
|---|
| [1340] | 526 | G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding();
|
|---|
| [968] | 527 | G4int absPDGcode = std::abs(PDGcode);
|
|---|
| 528 | G4double Elab = aParticle->GetTotalEnergy();
|
|---|
| 529 | // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
|
|---|
| 530 | G4double Plab = aParticle->GetMomentum().mag();
|
|---|
| 531 | // std::sqrt(Elab * Elab - 0.88);
|
|---|
| 532 |
|
|---|
| 533 | Elab /= GeV;
|
|---|
| 534 | Plab /= GeV;
|
|---|
| 535 |
|
|---|
| 536 | G4double LogPlab = std::log( Plab );
|
|---|
| 537 | G4double sqrLogPlab = LogPlab * LogPlab;
|
|---|
| 538 |
|
|---|
| 539 | //G4cout<<"Plab = "<<Plab<<G4endl;
|
|---|
| 540 |
|
|---|
| 541 | G4double NumberOfTargetProtons = Zt;
|
|---|
| 542 | G4double NumberOfTargetNucleons = At;
|
|---|
| 543 | G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
|
|---|
| 544 |
|
|---|
| 545 | if(NumberOfTargetNeutrons < 0.) NumberOfTargetNeutrons = 0.;
|
|---|
| 546 |
|
|---|
| 547 | G4double Xtotal = 0., Xelastic = 0., Xinelastic =0.;
|
|---|
| 548 |
|
|---|
| 549 | if( absPDGcode > 1000 ) //------Projectile is baryon --------
|
|---|
| 550 | {
|
|---|
| 551 | G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
|
|---|
| 552 | 0.522*sqrLogPlab - 4.51*LogPlab;
|
|---|
| 553 |
|
|---|
| 554 | G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
|
|---|
| 555 | 0.513*sqrLogPlab - 4.27*LogPlab;
|
|---|
| 556 |
|
|---|
| 557 | G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
|
|---|
| 558 | 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 559 |
|
|---|
| 560 | G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
|
|---|
| 561 | 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 562 |
|
|---|
| 563 | Xtotal = ( NumberOfTargetProtons * XtotPP +
|
|---|
| 564 | NumberOfTargetNeutrons * XtotPN );
|
|---|
| 565 |
|
|---|
| 566 | Xelastic = ( NumberOfTargetProtons * XelPP +
|
|---|
| 567 | NumberOfTargetNeutrons * XelPN );
|
|---|
| 568 | }
|
|---|
| [1340] | 569 |
|
|---|
| [968] | 570 | Xinelastic = Xtotal - Xelastic;
|
|---|
| 571 | if(Xinelastic < 0.) Xinelastic = 0.;
|
|---|
| 572 |
|
|---|
| 573 | return Xinelastic*= millibarn;
|
|---|
| 574 | }
|
|---|
| 575 |
|
|---|
| [1340] | 576 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 577 | //
|
|---|
| 578 | //
|
|---|
| 579 |
|
|---|
| 580 | G4double
|
|---|
| [1340] | 581 | G4GGNuclNuclCrossSection::GetNucleusRadius(const G4DynamicParticle* ,
|
|---|
| 582 | const G4Element* anElement)
|
|---|
| [968] | 583 | {
|
|---|
| [1340] | 584 | G4double At = anElement->GetN();
|
|---|
| [968] | 585 | G4double oneThird = 1.0/3.0;
|
|---|
| 586 | G4double cubicrAt = std::pow (At, oneThird);
|
|---|
| 587 |
|
|---|
| 588 | G4double R; // = fRadiusConst*cubicrAt;
|
|---|
| 589 | R = fRadiusConst*cubicrAt;
|
|---|
| 590 |
|
|---|
| 591 | G4double meanA = 21.;
|
|---|
| 592 | G4double tauA1 = 40.;
|
|---|
| 593 | G4double tauA2 = 10.;
|
|---|
| 594 | G4double tauA3 = 5.;
|
|---|
| 595 |
|
|---|
| 596 | G4double a1 = 0.85;
|
|---|
| 597 | G4double b1 = 1. - a1;
|
|---|
| 598 |
|
|---|
| 599 | G4double b2 = 0.3;
|
|---|
| 600 | G4double b3 = 4.;
|
|---|
| 601 |
|
|---|
| 602 | if (At > 20.) // 20.
|
|---|
| 603 | {
|
|---|
| 604 | R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
|
|---|
| 605 | }
|
|---|
| 606 | else if (At > 3.5)
|
|---|
| 607 | {
|
|---|
| 608 | R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
|
|---|
| 609 | }
|
|---|
| 610 | else
|
|---|
| 611 | {
|
|---|
| 612 | R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
|
|---|
| [1340] | 613 | }
|
|---|
| 614 |
|
|---|
| [968] | 615 | return R;
|
|---|
| 616 | }
|
|---|
| 617 |
|
|---|
| [1340] | 618 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 619 | //
|
|---|
| 620 | //
|
|---|
| 621 |
|
|---|
| 622 | G4double
|
|---|
| 623 | G4GGNuclNuclCrossSection::GetNucleusRadius(G4double At)
|
|---|
| 624 | {
|
|---|
| 625 | G4double R;
|
|---|
| 626 | R = GetNucleusRadiusDE(At);
|
|---|
| 627 |
|
|---|
| 628 | return R;
|
|---|
| 629 | }
|
|---|
| 630 |
|
|---|
| 631 | ///////////////////////////////////////////////////////////////////
|
|---|
| 632 |
|
|---|
| 633 | G4double
|
|---|
| 634 | G4GGNuclNuclCrossSection::GetNucleusRadiusGG(G4double At)
|
|---|
| 635 | {
|
|---|
| 636 | G4double oneThird = 1.0/3.0;
|
|---|
| 637 | G4double cubicrAt = std::pow (At, oneThird);
|
|---|
| 638 |
|
|---|
| [1340] | 639 | G4double R; // = fRadiusConst*cubicrAt;
|
|---|
| [968] | 640 | R = fRadiusConst*cubicrAt;
|
|---|
| 641 |
|
|---|
| 642 | G4double meanA = 20.;
|
|---|
| [1340] | 643 | G4double tauA = 20.;
|
|---|
| [968] | 644 |
|
|---|
| 645 | if ( At > 20.) // 20.
|
|---|
| 646 | {
|
|---|
| 647 | R *= ( 0.8 + 0.2*std::exp( -(At - meanA)/tauA) );
|
|---|
| 648 | }
|
|---|
| 649 | else
|
|---|
| 650 | {
|
|---|
| 651 | R *= ( 1.0 + 0.1*( 1. - std::exp( (At - meanA)/tauA) ) );
|
|---|
| 652 | }
|
|---|
| 653 |
|
|---|
| 654 | return R;
|
|---|
| 655 | }
|
|---|
| 656 |
|
|---|
| 657 |
|
|---|
| 658 | G4double
|
|---|
| 659 | G4GGNuclNuclCrossSection::GetNucleusRadiusDE(G4double A)
|
|---|
| 660 | {
|
|---|
| 661 | // algorithm from diffuse-elastic
|
|---|
| 662 |
|
|---|
| 663 | G4double R, r0, a11, a12, a13, a2, a3;
|
|---|
| 664 |
|
|---|
| 665 | a11 = 1.26; // 1.08, 1.16
|
|---|
| 666 | a12 = 1.; // 1.08, 1.16
|
|---|
| 667 | a13 = 1.12; // 1.08, 1.16
|
|---|
| 668 | a2 = 1.1;
|
|---|
| 669 | a3 = 1.;
|
|---|
| 670 |
|
|---|
| 671 |
|
|---|
| [1340] | 672 | if (A < 50.)
|
|---|
| [968] | 673 | {
|
|---|
| 674 | if( 10 < A && A <= 15. ) r0 = a11*( 1 - std::pow(A, -2./3.) )*fermi; // 1.08*fermi;
|
|---|
| 675 | else if( 15 < A && A <= 20 ) r0 = a12*( 1 - std::pow(A, -2./3.) )*fermi;
|
|---|
| 676 | else if( 20 < A && A <= 30 ) r0 = a13*( 1 - std::pow(A, -2./3.) )*fermi;
|
|---|
| 677 | else r0 = a2*fermi;
|
|---|
| 678 |
|
|---|
| 679 | R = r0*std::pow( A, 1./3. );
|
|---|
| 680 | }
|
|---|
| 681 | else
|
|---|
| 682 | {
|
|---|
| 683 | r0 = a3*fermi;
|
|---|
| 684 |
|
|---|
| 685 | R = r0*std::pow(A, 0.27);
|
|---|
| 686 | }
|
|---|
| 687 | return R;
|
|---|
| 688 | }
|
|---|
| 689 |
|
|---|
| 690 |
|
|---|
| [1340] | 691 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 692 | //
|
|---|
| 693 | //
|
|---|
| 694 |
|
|---|
| [1340] | 695 | G4double G4GGNuclNuclCrossSection::CalculateEcmValue(const G4double mp,
|
|---|
| 696 | const G4double mt,
|
|---|
| 697 | const G4double Plab)
|
|---|
| [968] | 698 | {
|
|---|
| 699 | G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
|
|---|
| 700 | G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
|
|---|
| 701 | // G4double Pcm = Plab * mt / Ecm;
|
|---|
| 702 | // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
|
|---|
| 703 |
|
|---|
| 704 | return Ecm ; // KEcm;
|
|---|
| 705 | }
|
|---|
| 706 |
|
|---|
| 707 |
|
|---|
| [1340] | 708 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| [968] | 709 | //
|
|---|
| 710 | //
|
|---|
| 711 |
|
|---|
| [1340] | 712 | G4double G4GGNuclNuclCrossSection::CalcMandelstamS(const G4double mp,
|
|---|
| 713 | const G4double mt,
|
|---|
| 714 | const G4double Plab)
|
|---|
| [968] | 715 | {
|
|---|
| 716 | G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
|
|---|
| 717 | G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
|
|---|
| 718 |
|
|---|
| 719 | return sMand;
|
|---|
| 720 | }
|
|---|
| 721 |
|
|---|
| 722 | //
|
|---|
| 723 | //
|
|---|
| [1340] | 724 | ///////////////////////////////////////////////////////////////////////////////
|
|---|