| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // 24.11.08 V. Grichine - first implementation
|
|---|
| 28 | //
|
|---|
| 29 |
|
|---|
| 30 | #include "G4GGNuclNuclCrossSection.hh"
|
|---|
| 31 |
|
|---|
| 32 | #include "G4ParticleTable.hh"
|
|---|
| 33 | #include "G4IonTable.hh"
|
|---|
| 34 | #include "G4ParticleDefinition.hh"
|
|---|
| 35 | #include "G4HadTmpUtil.hh"
|
|---|
| 36 |
|
|---|
| 37 |
|
|---|
| 38 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 39 | //
|
|---|
| 40 | //
|
|---|
| 41 |
|
|---|
| 42 | G4GGNuclNuclCrossSection::G4GGNuclNuclCrossSection()
|
|---|
| 43 | : fUpperLimit( 100000 * GeV ),
|
|---|
| 44 | fLowerLimit( 0.1 * MeV ),
|
|---|
| 45 | fRadiusConst( 1.08*fermi ) // 1.1, 1.3 ?
|
|---|
| 46 | {
|
|---|
| 47 | theProton = G4Proton::Proton();
|
|---|
| 48 | theNeutron = G4Neutron::Neutron();
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 52 | //
|
|---|
| 53 | //
|
|---|
| 54 |
|
|---|
| 55 | G4GGNuclNuclCrossSection::~G4GGNuclNuclCrossSection()
|
|---|
| 56 | {}
|
|---|
| 57 |
|
|---|
| 58 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 59 | //
|
|---|
| 60 | //
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | G4bool
|
|---|
| 64 | G4GGNuclNuclCrossSection::IsApplicable(const G4DynamicParticle* aDP,
|
|---|
| 65 | const G4Element* anElement)
|
|---|
| 66 | {
|
|---|
| 67 | G4int Z = G4lrint(anElement->GetZ());
|
|---|
| 68 | G4int N = G4lrint(anElement->GetN());
|
|---|
| 69 | return IsIsoApplicable(aDP, Z, N);
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 73 | //
|
|---|
| 74 | //
|
|---|
| 75 |
|
|---|
| 76 | G4bool
|
|---|
| 77 | G4GGNuclNuclCrossSection::IsIsoApplicable(const G4DynamicParticle* aDP,
|
|---|
| 78 | G4int Z, G4int)
|
|---|
| 79 | {
|
|---|
| 80 | G4bool applicable = false;
|
|---|
| 81 | G4double kineticEnergy = aDP->GetKineticEnergy();
|
|---|
| 82 |
|
|---|
| 83 | if (kineticEnergy >= fLowerLimit && Z > 1) applicable = true;
|
|---|
| 84 | return applicable;
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 88 | //
|
|---|
| 89 | // Calculates total and inelastic Xsc, derives elastic as total - inelastic
|
|---|
| 90 | // accordong to Glauber model with Gribov correction calculated in the dipole
|
|---|
| 91 | // approximation on light cone. Gaussian density helps to calculate rest
|
|---|
| 92 | // integrals of the model. [1] B.Z. Kopeliovich, nucl-th/0306044
|
|---|
| 93 |
|
|---|
| 94 |
|
|---|
| 95 | G4double G4GGNuclNuclCrossSection::
|
|---|
| 96 | GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement,
|
|---|
| 97 | G4double T)
|
|---|
| 98 | {
|
|---|
| 99 | G4int Z = G4lrint(anElement->GetZ());
|
|---|
| 100 | G4int N = G4lrint(anElement->GetN());
|
|---|
| 101 | return GetZandACrossSection(aParticle, Z, N, T);
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 105 | //
|
|---|
| 106 | // Calculates total and inelastic Xsc, derives elastic as total - inelastic
|
|---|
| 107 | // accordong to Glauber model with Gribov correction calculated in the dipole
|
|---|
| 108 | // approximation on light cone. Gaussian density of point-like nucleons helps
|
|---|
| 109 | // to calculate rest integrals of the model. [1] B.Z. Kopeliovich,
|
|---|
| 110 | // nucl-th/0306044 + simplification above
|
|---|
| 111 |
|
|---|
| 112 |
|
|---|
| 113 | G4double G4GGNuclNuclCrossSection::
|
|---|
| 114 | GetZandACrossSection(const G4DynamicParticle* aParticle,
|
|---|
| 115 | G4int tZ, G4int tA, G4double)
|
|---|
| 116 | {
|
|---|
| 117 | G4double xsection;
|
|---|
| 118 | G4double sigma;
|
|---|
| 119 | G4double cofInelastic = 2.4;
|
|---|
| 120 | G4double cofTotal = 2.0;
|
|---|
| 121 | G4double nucleusSquare;
|
|---|
| 122 | G4double cB;
|
|---|
| 123 | G4double ratio;
|
|---|
| 124 |
|
|---|
| 125 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 126 | G4double pA = aParticle->GetDefinition()->GetBaryonNumber();
|
|---|
| 127 |
|
|---|
| 128 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 129 | pTkin /= pA;
|
|---|
| 130 |
|
|---|
| 131 | G4double pN = pA - pZ;
|
|---|
| 132 | if( pN < 0. ) pN = 0.;
|
|---|
| 133 |
|
|---|
| 134 | G4double tN = tA - tZ;
|
|---|
| 135 | if( tN < 0. ) tN = 0.;
|
|---|
| 136 |
|
|---|
| 137 | G4double tR = GetNucleusRadius(tA);
|
|---|
| 138 | G4double pR = GetNucleusRadius(pA);
|
|---|
| 139 |
|
|---|
| 140 | cB = GetCoulombBarier(aParticle, G4double(tZ), G4double(tA), pR, tR);
|
|---|
| 141 | if (cB > 0.) {
|
|---|
| 142 |
|
|---|
| 143 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| 144 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| 145 |
|
|---|
| 146 | nucleusSquare = cofTotal*pi*( pR*pR + tR*tR ); // basically 2piRR
|
|---|
| 147 |
|
|---|
| 148 | ratio = sigma/nucleusSquare;
|
|---|
| 149 | xsection = nucleusSquare*std::log( 1. + ratio );
|
|---|
| 150 | fTotalXsc = xsection;
|
|---|
| 151 | fTotalXsc *= cB;
|
|---|
| 152 |
|
|---|
| 153 | fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
|
|---|
| 154 |
|
|---|
| 155 | fInelasticXsc *= cB;
|
|---|
| 156 | fElasticXsc = fTotalXsc - fInelasticXsc;
|
|---|
| 157 |
|
|---|
| 158 | // if (fElasticXsc < DBL_MIN) fElasticXsc = DBL_MIN;
|
|---|
| 159 | /*
|
|---|
| 160 | G4double difratio = ratio/(1.+ratio);
|
|---|
| 161 |
|
|---|
| 162 | fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
|
|---|
| 163 | */
|
|---|
| 164 | // production to be checked !!! edit MK xsc
|
|---|
| 165 |
|
|---|
| 166 | //sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscMK(theProton, pTkin, theProton) +
|
|---|
| 167 | // (pZ*tN+pN*tZ)*GetHadronNucleonXscMK(theProton, pTkin, theNeutron);
|
|---|
| 168 |
|
|---|
| 169 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| 170 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| 171 |
|
|---|
| 172 | ratio = sigma/nucleusSquare;
|
|---|
| 173 | fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
|
|---|
| 174 |
|
|---|
| 175 | if (fElasticXsc < 0.) fElasticXsc = 0.;
|
|---|
| 176 | }
|
|---|
| 177 | else
|
|---|
| 178 | {
|
|---|
| 179 | fInelasticXsc = 0.;
|
|---|
| 180 | fTotalXsc = 0.;
|
|---|
| 181 | fElasticXsc = 0.;
|
|---|
| 182 | fProductionXsc = 0.;
|
|---|
| 183 | }
|
|---|
| 184 | return fInelasticXsc; // xsection;
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 188 | //
|
|---|
| 189 | //
|
|---|
| 190 |
|
|---|
| 191 | G4double G4GGNuclNuclCrossSection::
|
|---|
| 192 | GetCoulombBarier(const G4DynamicParticle* aParticle, G4double tZ, G4double tA,
|
|---|
| 193 | G4double pR, G4double tR)
|
|---|
| 194 | {
|
|---|
| 195 | G4double ratio;
|
|---|
| 196 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 197 |
|
|---|
| 198 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 199 | // G4double pPlab = aParticle->GetTotalMomentum();
|
|---|
| 200 | G4double pM = aParticle->GetDefinition()->GetPDGMass();
|
|---|
| 201 | // G4double tM = tZ*proton_mass_c2 + (tA-tZ)*neutron_mass_c2; // ~ 1% accuracy
|
|---|
| 202 | G4double tM = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( G4int(tZ), G4int(tA) );
|
|---|
| 203 | G4double pElab = pTkin + pM;
|
|---|
| 204 | G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM);
|
|---|
| 205 | // G4double pPcm = pPlab*tM/totEcm;
|
|---|
| 206 | // G4double pTcm = std::sqrt(pM*pM + pPcm*pPcm) - pM;
|
|---|
| 207 | G4double totTcm = totEcm - pM -tM;
|
|---|
| 208 |
|
|---|
| 209 | G4double bC = fine_structure_const*hbarc*pZ*tZ;
|
|---|
| 210 | bC /= pR + tR;
|
|---|
| 211 | bC /= 2.; // 4., 2. parametrisation cof ??? vmg
|
|---|
| 212 |
|
|---|
| 213 | // G4cout<<"pTkin = "<<pTkin/GeV<<"; pPlab = "
|
|---|
| 214 | // <<pPlab/GeV<<"; bC = "<<bC/GeV<<"; pTcm = "<<pTcm/GeV<<G4endl;
|
|---|
| 215 |
|
|---|
| 216 | if( totTcm <= bC ) ratio = 0.;
|
|---|
| 217 | else ratio = 1. - bC/totTcm;
|
|---|
| 218 |
|
|---|
| 219 | // if(ratio < DBL_MIN) ratio = DBL_MIN;
|
|---|
| 220 | if( ratio < 0.) ratio = 0.;
|
|---|
| 221 |
|
|---|
| 222 | // G4cout <<"ratio = "<<ratio<<G4endl;
|
|---|
| 223 | return ratio;
|
|---|
| 224 | }
|
|---|
| 225 |
|
|---|
| 226 |
|
|---|
| 227 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 228 | //
|
|---|
| 229 | // Return single-diffraction/inelastic cross-section ratio
|
|---|
| 230 |
|
|---|
| 231 | G4double G4GGNuclNuclCrossSection::
|
|---|
| 232 | GetRatioSD(const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
|
|---|
| 233 | {
|
|---|
| 234 | G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
|
|---|
| 235 |
|
|---|
| 236 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 237 | G4double pA = aParticle->GetDefinition()->GetBaryonNumber();
|
|---|
| 238 |
|
|---|
| 239 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 240 | pTkin /= pA;
|
|---|
| 241 |
|
|---|
| 242 | G4double pN = pA - pZ;
|
|---|
| 243 | if( pN < 0. ) pN = 0.;
|
|---|
| 244 |
|
|---|
| 245 | G4double tN = tA - tZ;
|
|---|
| 246 | if( tN < 0. ) tN = 0.;
|
|---|
| 247 |
|
|---|
| 248 | G4double tR = GetNucleusRadius(tA);
|
|---|
| 249 | G4double pR = GetNucleusRadius(pA);
|
|---|
| 250 |
|
|---|
| 251 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| 252 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| 253 |
|
|---|
| 254 | nucleusSquare = cofTotal*pi*( pR*pR + tR*tR ); // basically 2piRR
|
|---|
| 255 | ratio = sigma/nucleusSquare;
|
|---|
| 256 | fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
|
|---|
| 257 | G4double difratio = ratio/(1.+ratio);
|
|---|
| 258 |
|
|---|
| 259 | fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
|
|---|
| 260 |
|
|---|
| 261 | if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
|
|---|
| 262 | else ratio = 0.;
|
|---|
| 263 |
|
|---|
| 264 | return ratio;
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 268 | //
|
|---|
| 269 | // Return quasi-elastic/inelastic cross-section ratio
|
|---|
| 270 |
|
|---|
| 271 | G4double G4GGNuclNuclCrossSection::
|
|---|
| 272 | GetRatioQE(const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
|
|---|
| 273 | {
|
|---|
| 274 | G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
|
|---|
| 275 |
|
|---|
| 276 | G4double pZ = aParticle->GetDefinition()->GetPDGCharge();
|
|---|
| 277 | G4double pA = aParticle->GetDefinition()->GetBaryonNumber();
|
|---|
| 278 |
|
|---|
| 279 | G4double pTkin = aParticle->GetKineticEnergy();
|
|---|
| 280 | pTkin /= pA;
|
|---|
| 281 |
|
|---|
| 282 | G4double pN = pA - pZ;
|
|---|
| 283 | if( pN < 0. ) pN = 0.;
|
|---|
| 284 |
|
|---|
| 285 | G4double tN = tA - tZ;
|
|---|
| 286 | if( tN < 0. ) tN = 0.;
|
|---|
| 287 |
|
|---|
| 288 | G4double tR = GetNucleusRadius(tA);
|
|---|
| 289 | G4double pR = GetNucleusRadius(pA);
|
|---|
| 290 |
|
|---|
| 291 | sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) +
|
|---|
| 292 | (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron);
|
|---|
| 293 |
|
|---|
| 294 | nucleusSquare = cofTotal*pi*( pR*pR + tR*tR ); // basically 2piRR
|
|---|
| 295 | ratio = sigma/nucleusSquare;
|
|---|
| 296 | fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
|
|---|
| 297 |
|
|---|
| 298 | // sigma = GetHNinelasticXsc(aParticle, tA, tZ);
|
|---|
| 299 | ratio = sigma/nucleusSquare;
|
|---|
| 300 | fProductionXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
|
|---|
| 301 |
|
|---|
| 302 | if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
|
|---|
| 303 | else ratio = 0.;
|
|---|
| 304 | if ( ratio < 0. ) ratio = 0.;
|
|---|
| 305 |
|
|---|
| 306 | return ratio;
|
|---|
| 307 | }
|
|---|
| 308 |
|
|---|
| 309 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 310 | //
|
|---|
| 311 | // Returns hadron-nucleon Xsc according to differnt parametrisations:
|
|---|
| 312 | // [2] E. Levin, hep-ph/9710546
|
|---|
| 313 | // [3] U. Dersch, et al, hep-ex/9910052
|
|---|
| 314 | // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
|
|---|
| 315 |
|
|---|
| 316 | G4double
|
|---|
| 317 | G4GGNuclNuclCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle,
|
|---|
| 318 | const G4Element* anElement)
|
|---|
| 319 | {
|
|---|
| 320 | G4int At = G4lrint(anElement->GetN()); // number of nucleons
|
|---|
| 321 | G4int Zt = G4lrint(anElement->GetZ()); // number of protons
|
|---|
| 322 | return GetHadronNucleonXsc(aParticle, At, Zt);
|
|---|
| 323 | }
|
|---|
| 324 |
|
|---|
| 325 |
|
|---|
| 326 |
|
|---|
| 327 |
|
|---|
| 328 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 329 | //
|
|---|
| 330 | // Returns hadron-nucleon Xsc according to differnt parametrisations:
|
|---|
| 331 | // [2] E. Levin, hep-ph/9710546
|
|---|
| 332 | // [3] U. Dersch, et al, hep-ex/9910052
|
|---|
| 333 | // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
|
|---|
| 334 |
|
|---|
| 335 | G4double
|
|---|
| 336 | G4GGNuclNuclCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle,
|
|---|
| 337 | G4int At, G4int Zt)
|
|---|
| 338 | {
|
|---|
| 339 | G4double xsection = 0.;
|
|---|
| 340 |
|
|---|
| 341 | G4double targ_mass = G4ParticleTable::GetParticleTable()->
|
|---|
| 342 | GetIonTable()->GetIonMass(Zt, At);
|
|---|
| 343 | targ_mass = 0.939*GeV; // ~mean neutron and proton ???
|
|---|
| 344 |
|
|---|
| 345 | G4double proj_mass = aParticle->GetMass();
|
|---|
| 346 | G4double proj_momentum = aParticle->GetMomentum().mag();
|
|---|
| 347 | G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
|
|---|
| 348 |
|
|---|
| 349 | sMand /= GeV*GeV; // in GeV for parametrisation
|
|---|
| 350 | proj_momentum /= GeV;
|
|---|
| 351 | const G4ParticleDefinition* pParticle = aParticle->GetDefinition();
|
|---|
| 352 |
|
|---|
| 353 | if(pParticle == theNeutron) // as proton ???
|
|---|
| 354 | {
|
|---|
| 355 | xsection = G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
|
|---|
| 356 | }
|
|---|
| 357 | else if(pParticle == theProton)
|
|---|
| 358 | {
|
|---|
| 359 | xsection = G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
|
|---|
| 360 | }
|
|---|
| 361 |
|
|---|
| 362 | xsection *= millibarn;
|
|---|
| 363 | return xsection;
|
|---|
| 364 | }
|
|---|
| 365 |
|
|---|
| 366 |
|
|---|
| 367 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 368 | //
|
|---|
| 369 | // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
|
|---|
| 370 | // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
|
|---|
| 371 |
|
|---|
| 372 | G4double
|
|---|
| 373 | G4GGNuclNuclCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle,
|
|---|
| 374 | const G4Element* anElement)
|
|---|
| 375 | {
|
|---|
| 376 | G4int At = G4lrint(anElement->GetN()); // number of nucleons
|
|---|
| 377 | G4int Zt = G4lrint(anElement->GetZ()); // number of protons
|
|---|
| 378 | return GetHadronNucleonXscPDG( aParticle, At, Zt );
|
|---|
| 379 | }
|
|---|
| 380 |
|
|---|
| 381 |
|
|---|
| 382 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 383 | //
|
|---|
| 384 | // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
|
|---|
| 385 | // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
|
|---|
| 386 | // At = number of nucleons, Zt = number of protons
|
|---|
| 387 |
|
|---|
| 388 | G4double
|
|---|
| 389 | G4GGNuclNuclCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle,
|
|---|
| 390 | G4int At, G4int Zt)
|
|---|
| 391 | {
|
|---|
| 392 | G4double xsection = 0.;
|
|---|
| 393 |
|
|---|
| 394 | G4double Nt = At-Zt; // number of neutrons
|
|---|
| 395 | if (Nt < 0.) Nt = 0.;
|
|---|
| 396 |
|
|---|
| 397 | G4double targ_mass = G4ParticleTable::GetParticleTable()->
|
|---|
| 398 | GetIonTable()->GetIonMass(Zt, At);
|
|---|
| 399 | targ_mass = 0.939*GeV; // ~mean neutron and proton ???
|
|---|
| 400 |
|
|---|
| 401 | G4double proj_mass = aParticle->GetMass();
|
|---|
| 402 | G4double proj_momentum = aParticle->GetMomentum().mag();
|
|---|
| 403 | G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
|
|---|
| 404 | sMand /= GeV*GeV; // in GeV for parametrisation
|
|---|
| 405 |
|
|---|
| 406 | // General PDG fit constants
|
|---|
| 407 |
|
|---|
| 408 | G4double s0 = 5.38*5.38; // in Gev^2
|
|---|
| 409 | G4double eta1 = 0.458;
|
|---|
| 410 | G4double eta2 = 0.458;
|
|---|
| 411 | G4double B = 0.308;
|
|---|
| 412 |
|
|---|
| 413 | const G4ParticleDefinition* pParticle = aParticle->GetDefinition();
|
|---|
| 414 |
|
|---|
| 415 | if(pParticle == theNeutron) // proton-neutron fit
|
|---|
| 416 | {
|
|---|
| 417 | xsection = G4double(Zt)*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 418 | + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
|
|---|
| 419 | xsection += Nt*(35.45 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 420 | + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
|
|---|
| 421 | }
|
|---|
| 422 | else if(pParticle == theProton)
|
|---|
| 423 | {
|
|---|
| 424 | xsection = G4double(Zt)*(35.45 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 425 | + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
|
|---|
| 426 |
|
|---|
| 427 | xsection += Nt*(35.80 + B*std::pow(std::log(sMand/s0),2.)
|
|---|
| 428 | + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
|
|---|
| 429 | }
|
|---|
| 430 | xsection *= millibarn; // parametrised in mb
|
|---|
| 431 | return xsection;
|
|---|
| 432 | }
|
|---|
| 433 |
|
|---|
| 434 |
|
|---|
| 435 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 436 | //
|
|---|
| 437 | // Returns nucleon-nucleon cross-section based on N. Starkov parametrisation of
|
|---|
| 438 | // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
|
|---|
| 439 | // projectile nucleon is pParticle with pTkin shooting target nucleon tParticle
|
|---|
| 440 |
|
|---|
| 441 | G4double
|
|---|
| 442 | G4GGNuclNuclCrossSection::GetHadronNucleonXscNS(G4ParticleDefinition* pParticle,
|
|---|
| 443 | G4double pTkin,
|
|---|
| 444 | G4ParticleDefinition* tParticle)
|
|---|
| 445 | {
|
|---|
| 446 | G4double xsection(0), Delta, A0, B0;
|
|---|
| 447 | G4double hpXsc(0);
|
|---|
| 448 | G4double hnXsc(0);
|
|---|
| 449 |
|
|---|
| 450 | G4double targ_mass = tParticle->GetPDGMass();
|
|---|
| 451 | G4double proj_mass = pParticle->GetPDGMass();
|
|---|
| 452 |
|
|---|
| 453 | G4double proj_energy = proj_mass + pTkin;
|
|---|
| 454 | G4double proj_momentum = std::sqrt(pTkin*(pTkin+2*proj_mass));
|
|---|
| 455 |
|
|---|
| 456 | G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
|
|---|
| 457 |
|
|---|
| 458 | sMand /= GeV*GeV; // in GeV for parametrisation
|
|---|
| 459 | proj_momentum /= GeV;
|
|---|
| 460 | proj_energy /= GeV;
|
|---|
| 461 | proj_mass /= GeV;
|
|---|
| 462 |
|
|---|
| 463 | // General PDG fit constants
|
|---|
| 464 |
|
|---|
| 465 | // G4double s0 = 5.38*5.38; // in Gev^2
|
|---|
| 466 | // G4double eta1 = 0.458;
|
|---|
| 467 | // G4double eta2 = 0.458;
|
|---|
| 468 | // G4double B = 0.308;
|
|---|
| 469 |
|
|---|
| 470 | if( proj_momentum >= 10. ) // high energy: pp = nn = np
|
|---|
| 471 | // if( proj_momentum >= 2.)
|
|---|
| 472 | {
|
|---|
| 473 | Delta = 1.;
|
|---|
| 474 | if (proj_energy < 40.) Delta = 0.916+0.0021*proj_energy;
|
|---|
| 475 |
|
|---|
| 476 | if (proj_momentum >= 10.) {
|
|---|
| 477 | B0 = 7.5;
|
|---|
| 478 | A0 = 100. - B0*std::log(3.0e7);
|
|---|
| 479 |
|
|---|
| 480 | xsection = A0 + B0*std::log(proj_energy) - 11
|
|---|
| 481 | + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
|
|---|
| 482 | 0.93827*0.93827,-0.165); // mb
|
|---|
| 483 | }
|
|---|
| 484 | }
|
|---|
| 485 | else // low energy pp = nn != np
|
|---|
| 486 | {
|
|---|
| 487 | if(pParticle == tParticle) // pp or nn // nn to be pp
|
|---|
| 488 | {
|
|---|
| 489 | if( proj_momentum < 0.73 )
|
|---|
| 490 | {
|
|---|
| 491 | hnXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
|
|---|
| 492 | }
|
|---|
| 493 | else if( proj_momentum < 1.05 )
|
|---|
| 494 | {
|
|---|
| 495 | hnXsc = 23 + 40*(std::log(proj_momentum/0.73))*
|
|---|
| 496 | (std::log(proj_momentum/0.73));
|
|---|
| 497 | }
|
|---|
| 498 | else // if( proj_momentum < 10. )
|
|---|
| 499 | {
|
|---|
| 500 | hnXsc = 39.0 +
|
|---|
| 501 | 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
|
|---|
| 502 | }
|
|---|
| 503 | xsection = hnXsc;
|
|---|
| 504 | }
|
|---|
| 505 | else // pn to be np
|
|---|
| 506 | {
|
|---|
| 507 | if( proj_momentum < 0.8 )
|
|---|
| 508 | {
|
|---|
| 509 | hpXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
|
|---|
| 510 | }
|
|---|
| 511 | else if( proj_momentum < 1.4 )
|
|---|
| 512 | {
|
|---|
| 513 | hpXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
|
|---|
| 514 | }
|
|---|
| 515 | else // if( proj_momentum < 10. )
|
|---|
| 516 | {
|
|---|
| 517 | hpXsc = 33.3+
|
|---|
| 518 | 20.8*(std::pow(proj_momentum,2.0)-1.35)/
|
|---|
| 519 | (std::pow(proj_momentum,2.50)+0.95);
|
|---|
| 520 | }
|
|---|
| 521 | xsection = hpXsc;
|
|---|
| 522 | }
|
|---|
| 523 | }
|
|---|
| 524 | xsection *= millibarn; // parametrised in mb
|
|---|
| 525 | return xsection;
|
|---|
| 526 | }
|
|---|
| 527 |
|
|---|
| 528 | /////////////////////////////////////////////////////////////////////////////////
|
|---|
| 529 | //
|
|---|
| 530 | // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
|
|---|
| 531 |
|
|---|
| 532 | G4double
|
|---|
| 533 | G4GGNuclNuclCrossSection::GetHNinelasticXscVU(const G4DynamicParticle* aParticle,
|
|---|
| 534 | G4int At, G4int Zt)
|
|---|
| 535 | {
|
|---|
| 536 | G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding();
|
|---|
| 537 | G4int absPDGcode = std::abs(PDGcode);
|
|---|
| 538 | G4double Elab = aParticle->GetTotalEnergy();
|
|---|
| 539 | // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
|
|---|
| 540 | G4double Plab = aParticle->GetMomentum().mag();
|
|---|
| 541 | // std::sqrt(Elab * Elab - 0.88);
|
|---|
| 542 |
|
|---|
| 543 | Elab /= GeV;
|
|---|
| 544 | Plab /= GeV;
|
|---|
| 545 |
|
|---|
| 546 | G4double LogPlab = std::log( Plab );
|
|---|
| 547 | G4double sqrLogPlab = LogPlab * LogPlab;
|
|---|
| 548 |
|
|---|
| 549 | //G4cout<<"Plab = "<<Plab<<G4endl;
|
|---|
| 550 |
|
|---|
| 551 | G4double NumberOfTargetProtons = Zt;
|
|---|
| 552 | G4double NumberOfTargetNucleons = At;
|
|---|
| 553 | G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
|
|---|
| 554 |
|
|---|
| 555 | if(NumberOfTargetNeutrons < 0.) NumberOfTargetNeutrons = 0.;
|
|---|
| 556 |
|
|---|
| 557 | G4double Xtotal = 0., Xelastic = 0., Xinelastic =0.;
|
|---|
| 558 |
|
|---|
| 559 | if( absPDGcode > 1000 ) //------Projectile is baryon --------
|
|---|
| 560 | {
|
|---|
| 561 | G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
|
|---|
| 562 | 0.522*sqrLogPlab - 4.51*LogPlab;
|
|---|
| 563 |
|
|---|
| 564 | G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
|
|---|
| 565 | 0.513*sqrLogPlab - 4.27*LogPlab;
|
|---|
| 566 |
|
|---|
| 567 | G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
|
|---|
| 568 | 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 569 |
|
|---|
| 570 | G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
|
|---|
| 571 | 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 572 |
|
|---|
| 573 | Xtotal = ( NumberOfTargetProtons * XtotPP +
|
|---|
| 574 | NumberOfTargetNeutrons * XtotPN );
|
|---|
| 575 |
|
|---|
| 576 | Xelastic = ( NumberOfTargetProtons * XelPP +
|
|---|
| 577 | NumberOfTargetNeutrons * XelPN );
|
|---|
| 578 | }
|
|---|
| 579 |
|
|---|
| 580 | Xinelastic = Xtotal - Xelastic;
|
|---|
| 581 | if(Xinelastic < 0.) Xinelastic = 0.;
|
|---|
| 582 |
|
|---|
| 583 | return Xinelastic*= millibarn;
|
|---|
| 584 | }
|
|---|
| 585 |
|
|---|
| 586 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 587 | //
|
|---|
| 588 | //
|
|---|
| 589 |
|
|---|
| 590 | G4double
|
|---|
| 591 | G4GGNuclNuclCrossSection::GetNucleusRadius(const G4DynamicParticle* ,
|
|---|
| 592 | const G4Element* anElement)
|
|---|
| 593 | {
|
|---|
| 594 | G4double At = anElement->GetN();
|
|---|
| 595 | G4double oneThird = 1.0/3.0;
|
|---|
| 596 | G4double cubicrAt = std::pow (At, oneThird);
|
|---|
| 597 |
|
|---|
| 598 | G4double R; // = fRadiusConst*cubicrAt;
|
|---|
| 599 | R = fRadiusConst*cubicrAt;
|
|---|
| 600 |
|
|---|
| 601 | G4double meanA = 21.;
|
|---|
| 602 | G4double tauA1 = 40.;
|
|---|
| 603 | G4double tauA2 = 10.;
|
|---|
| 604 | G4double tauA3 = 5.;
|
|---|
| 605 |
|
|---|
| 606 | G4double a1 = 0.85;
|
|---|
| 607 | G4double b1 = 1. - a1;
|
|---|
| 608 |
|
|---|
| 609 | G4double b2 = 0.3;
|
|---|
| 610 | G4double b3 = 4.;
|
|---|
| 611 |
|
|---|
| 612 | if (At > 20.) // 20.
|
|---|
| 613 | {
|
|---|
| 614 | R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
|
|---|
| 615 | }
|
|---|
| 616 | else if (At > 3.5)
|
|---|
| 617 | {
|
|---|
| 618 | R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
|
|---|
| 619 | }
|
|---|
| 620 | else
|
|---|
| 621 | {
|
|---|
| 622 | R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
|
|---|
| 623 | }
|
|---|
| 624 |
|
|---|
| 625 | return R;
|
|---|
| 626 | }
|
|---|
| 627 |
|
|---|
| 628 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 629 | //
|
|---|
| 630 | //
|
|---|
| 631 |
|
|---|
| 632 | G4double
|
|---|
| 633 | G4GGNuclNuclCrossSection::GetNucleusRadius(G4double At)
|
|---|
| 634 | {
|
|---|
| 635 | G4double R;
|
|---|
| 636 | R = GetNucleusRadiusDE(At);
|
|---|
| 637 |
|
|---|
| 638 | return R;
|
|---|
| 639 | }
|
|---|
| 640 |
|
|---|
| 641 | ///////////////////////////////////////////////////////////////////
|
|---|
| 642 |
|
|---|
| 643 | G4double
|
|---|
| 644 | G4GGNuclNuclCrossSection::GetNucleusRadiusGG(G4double At)
|
|---|
| 645 | {
|
|---|
| 646 | G4double oneThird = 1.0/3.0;
|
|---|
| 647 | G4double cubicrAt = std::pow (At, oneThird);
|
|---|
| 648 |
|
|---|
| 649 | G4double R; // = fRadiusConst*cubicrAt;
|
|---|
| 650 | R = fRadiusConst*cubicrAt;
|
|---|
| 651 |
|
|---|
| 652 | G4double meanA = 20.;
|
|---|
| 653 | G4double tauA = 20.;
|
|---|
| 654 |
|
|---|
| 655 | if ( At > 20.) // 20.
|
|---|
| 656 | {
|
|---|
| 657 | R *= ( 0.8 + 0.2*std::exp( -(At - meanA)/tauA) );
|
|---|
| 658 | }
|
|---|
| 659 | else
|
|---|
| 660 | {
|
|---|
| 661 | R *= ( 1.0 + 0.1*( 1. - std::exp( (At - meanA)/tauA) ) );
|
|---|
| 662 | }
|
|---|
| 663 |
|
|---|
| 664 | return R;
|
|---|
| 665 | }
|
|---|
| 666 |
|
|---|
| 667 |
|
|---|
| 668 | G4double
|
|---|
| 669 | G4GGNuclNuclCrossSection::GetNucleusRadiusDE(G4double A)
|
|---|
| 670 | {
|
|---|
| 671 | // algorithm from diffuse-elastic
|
|---|
| 672 |
|
|---|
| 673 | G4double R, r0, a11, a12, a13, a2, a3;
|
|---|
| 674 |
|
|---|
| 675 | a11 = 1.26; // 1.08, 1.16
|
|---|
| 676 | a12 = 1.; // 1.08, 1.16
|
|---|
| 677 | a13 = 1.12; // 1.08, 1.16
|
|---|
| 678 | a2 = 1.1;
|
|---|
| 679 | a3 = 1.;
|
|---|
| 680 |
|
|---|
| 681 |
|
|---|
| 682 | if (A < 50.)
|
|---|
| 683 | {
|
|---|
| 684 | if( 10 < A && A <= 15. ) r0 = a11*( 1 - std::pow(A, -2./3.) )*fermi; // 1.08*fermi;
|
|---|
| 685 | else if( 15 < A && A <= 20 ) r0 = a12*( 1 - std::pow(A, -2./3.) )*fermi;
|
|---|
| 686 | else if( 20 < A && A <= 30 ) r0 = a13*( 1 - std::pow(A, -2./3.) )*fermi;
|
|---|
| 687 | else r0 = a2*fermi;
|
|---|
| 688 |
|
|---|
| 689 | R = r0*std::pow( A, 1./3. );
|
|---|
| 690 | }
|
|---|
| 691 | else
|
|---|
| 692 | {
|
|---|
| 693 | r0 = a3*fermi;
|
|---|
| 694 |
|
|---|
| 695 | R = r0*std::pow(A, 0.27);
|
|---|
| 696 | }
|
|---|
| 697 | return R;
|
|---|
| 698 | }
|
|---|
| 699 |
|
|---|
| 700 |
|
|---|
| 701 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 702 | //
|
|---|
| 703 | //
|
|---|
| 704 |
|
|---|
| 705 | G4double G4GGNuclNuclCrossSection::CalculateEcmValue(const G4double mp,
|
|---|
| 706 | const G4double mt,
|
|---|
| 707 | const G4double Plab)
|
|---|
| 708 | {
|
|---|
| 709 | G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
|
|---|
| 710 | G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
|
|---|
| 711 | // G4double Pcm = Plab * mt / Ecm;
|
|---|
| 712 | // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
|
|---|
| 713 |
|
|---|
| 714 | return Ecm ; // KEcm;
|
|---|
| 715 | }
|
|---|
| 716 |
|
|---|
| 717 |
|
|---|
| 718 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 719 | //
|
|---|
| 720 | //
|
|---|
| 721 |
|
|---|
| 722 | G4double G4GGNuclNuclCrossSection::CalcMandelstamS(const G4double mp,
|
|---|
| 723 | const G4double mt,
|
|---|
| 724 | const G4double Plab)
|
|---|
| 725 | {
|
|---|
| 726 | G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
|
|---|
| 727 | G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
|
|---|
| 728 |
|
|---|
| 729 | return sMand;
|
|---|
| 730 | }
|
|---|
| 731 |
|
|---|
| 732 | //
|
|---|
| 733 | //
|
|---|
| 734 | ///////////////////////////////////////////////////////////////////////////////
|
|---|