// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // 24.11.08 V. Grichine - first implementation // #include "G4GGNuclNuclCrossSection.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" #include "G4ParticleDefinition.hh" //////////////////////////////////////////////////////////////////////////////// // // G4GGNuclNuclCrossSection::G4GGNuclNuclCrossSection() : fUpperLimit( 100000 * GeV ), fLowerLimit( 0.1 * MeV ), fRadiusConst( 1.08*fermi ) // 1.1, 1.3 ? { theProton = G4Proton::Proton(); theNeutron = G4Neutron::Neutron(); } /////////////////////////////////////////////////////////////////////////////////////// // // G4GGNuclNuclCrossSection::~G4GGNuclNuclCrossSection() { } //////////////////////////////////////////////////////////////////////////////////////// // // G4bool G4GGNuclNuclCrossSection::IsApplicable(const G4DynamicParticle* aDP, const G4Element* anElement) { return IsZAApplicable(aDP, anElement->GetZ(), anElement->GetN()); } //////////////////////////////////////////////////////////////////////////////////////// // // G4bool G4GGNuclNuclCrossSection::IsZAApplicable(const G4DynamicParticle* aDP, G4double Z, G4double) { G4bool applicable = false; // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber(); G4double kineticEnergy = aDP->GetKineticEnergy(); // const G4ParticleDefinition* theParticle = aDP->GetDefinition(); if ( kineticEnergy >= fLowerLimit && Z > 1.5 ) applicable = true; return applicable; } //////////////////////////////////////////////////////////////////////////////////////// // // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to // Glauber model with Gribov correction calculated in the dipole approximation on // light cone. Gaussian density helps to calculate rest integrals of the model. // [1] B.Z. Kopeliovich, nucl-th/0306044 G4double G4GGNuclNuclCrossSection:: GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement, G4double T) { return GetIsoZACrossSection(aParticle, anElement->GetZ(), anElement->GetN(), T); } //////////////////////////////////////////////////////////////////////////////////////// // // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to // Glauber model with Gribov correction calculated in the dipole approximation on // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model. // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above G4double G4GGNuclNuclCrossSection:: GetIsoZACrossSection(const G4DynamicParticle* aParticle, G4double tZ, G4double tA, G4double) { G4double xsection, sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, cB, ratio; G4double pZ = aParticle->GetDefinition()->GetPDGCharge(); G4double pA = aParticle->GetDefinition()->GetBaryonNumber(); G4double pTkin = aParticle->GetKineticEnergy(); pTkin /= pA; G4double pN = pA - pZ; if( pN < 0. ) pN = 0.; G4double tN = tA - tZ; if( tN < 0. ) tN = 0.; G4double tR = GetNucleusRadius(tA); G4double pR = GetNucleusRadius(pA); cB = GetCoulombBarier(aParticle, tZ, tA, pR, tR); if(cB > 0.) { sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscNS(theProton, pTkin, theProton) + (pZ*tN+pN*tZ)*GetHadronNucleonXscNS(theProton, pTkin, theNeutron); nucleusSquare = cofTotal*pi*( pR*pR + tR*tR ); // basically 2piRR ratio = sigma/nucleusSquare; xsection = nucleusSquare*std::log( 1. + ratio ); fTotalXsc = xsection; fTotalXsc *= cB; fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; fInelasticXsc *= cB; fElasticXsc = fTotalXsc - fInelasticXsc; // if (fElasticXsc < DBL_MIN) fElasticXsc = DBL_MIN; /* G4double difratio = ratio/(1.+ratio); fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) ); */ // production to be checked !!! edit MK xsc sigma = (pZ*tZ+pN*tN)*GetHadronNucleonXscMK(theProton, pTkin, theProton) + (pZ*tN+pN*tZ)*GetHadronNucleonXscMK(theProton, pTkin, theNeutron); ratio = sigma/nucleusSquare; fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; if (fElasticXsc < 0.) fElasticXsc = 0.; } else { fInelasticXsc = 0.; fTotalXsc = 0.; fElasticXsc = 0.; fProductionXsc = 0.; } return fInelasticXsc; // xsection; } //////////////////////////////////////////////////////////////////////////////////////// // // G4double G4GGNuclNuclCrossSection:: GetCoulombBarier(const G4DynamicParticle* aParticle, G4double tZ, G4double tA, G4double pR, G4double tR) { G4double ratio; G4double pZ = aParticle->GetDefinition()->GetPDGCharge(); G4double pTkin = aParticle->GetKineticEnergy(); // G4double pPlab = aParticle->GetTotalMomentum(); G4double pM = aParticle->GetDefinition()->GetPDGMass(); // G4double tM = tZ*proton_mass_c2 + (tA-tZ)*neutron_mass_c2; // ~ 1% accuracy G4double tM = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( G4int(tZ), G4int(tA) ); G4double pElab = pTkin + pM; G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM); // G4double pPcm = pPlab*tM/totEcm; // G4double pTcm = std::sqrt(pM*pM + pPcm*pPcm) - pM; G4double totTcm = totEcm - pM -tM; G4double bC = fine_structure_const*hbarc*pZ*tZ; bC /= pR + tR; bC /= 2.; // 4., 2. parametrisation cof ??? vmg // G4cout<<"pTkin = "< .5 ) kfl = false; } if ( (PDG == 2212 && F) || (PDG == 2112 && !F) ) I = 0; // pp/nn else if( (PDG == 2112 && F) || (PDG == 2212 && !F) ) I = 1; // np/pn else { G4cout<<"MK PDG = "<pma) { G4double lp = std::log(p)-lmi; G4double lp2 = lp*lp; elasticXsc = pbe*lp2 + 6.72; totalXsc = pbt*lp2 + 38.2; } else { G4double p2 = p*p; G4double LE = 1./( .00012 + p2*.2); G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; G4double rp2 = 1./p2; elasticXsc = LE + ( pbe*lp2 + 6.72+32.6/p)/( 1. + rp2/p); totalXsc = LE + ( pbt*lp2 + 38.2+52.7*rp2)/( 1. + 2.72*rp2*rp2); } } else if( I==1 ) // np/pn { if( p < pmi ) { G4double p2 = p*p; elasticXsc = 1./( .00012 + p2*( .051 + .1*p2)); totalXsc = elasticXsc; } else if( p > pma ) { G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; elasticXsc = pbe*lp2 + 6.72; totalXsc = pbt*lp2 + 38.2; } else { G4double p2 = p*p; G4double LE = 1./( .00012 + p2*( .051 + .1*p2 ) ); G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; G4double rp2 = 1./p2; elasticXsc = LE + (pbe*lp2 + 6.72 + 30./p)/( 1. + .49*rp2/p); totalXsc = LE + (pbt*lp2 + 38.2)/( 1. + .54*rp2*rp2); } } else { G4cout<<"PDG incoding = "< totalXsc ) elasticXsc = totalXsc; totalXsc *= millibarn; elasticXsc *= millibarn; inelasticXsc = totalXsc - elasticXsc; if (inelasticXsc < 0.) inelasticXsc = 0.; return inelasticXsc; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GGNuclNuclCrossSection::GetNucleusRadius( const G4DynamicParticle* , const G4Element* anElement) { G4double At = anElement->GetN(); G4double oneThird = 1.0/3.0; G4double cubicrAt = std::pow (At, oneThird); G4double R; // = fRadiusConst*cubicrAt; /* G4double tmp = std::pow( cubicrAt-1., 3.); tmp += At; tmp *= 0.5; if (At > 20.) // 20. { R = fRadiusConst*std::pow (tmp, oneThird); } else { R = fRadiusConst*cubicrAt; } */ R = fRadiusConst*cubicrAt; // return R; // !!!! G4double meanA = 21.; G4double tauA1 = 40.; G4double tauA2 = 10.; G4double tauA3 = 5.; G4double a1 = 0.85; G4double b1 = 1. - a1; G4double b2 = 0.3; G4double b3 = 4.; if (At > 20.) // 20. { R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) ); } else if (At > 3.5) { R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) ); } else { R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) ); } return R; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GGNuclNuclCrossSection::GetNucleusRadius(G4double At) { G4double R; // R = GetNucleusRadiusGG(At); R = GetNucleusRadiusDE(At); return R; } /////////////////////////////////////////////////////////////////// G4double G4GGNuclNuclCrossSection::GetNucleusRadiusGG(G4double At) { G4double oneThird = 1.0/3.0; G4double cubicrAt = std::pow (At, oneThird); G4double R; // = fRadiusConst*cubicrAt; /* G4double tmp = std::pow( cubicrAt-1., 3.); tmp += At; tmp *= 0.5; if (At > 20.) { R = fRadiusConst*std::pow (tmp, oneThird); } else { R = fRadiusConst*cubicrAt; } */ R = fRadiusConst*cubicrAt; G4double meanA = 20.; G4double tauA = 20.; if ( At > 20.) // 20. { R *= ( 0.8 + 0.2*std::exp( -(At - meanA)/tauA) ); } else { R *= ( 1.0 + 0.1*( 1. - std::exp( (At - meanA)/tauA) ) ); } return R; } G4double G4GGNuclNuclCrossSection::GetNucleusRadiusDE(G4double A) { // algorithm from diffuse-elastic G4double R, r0, a11, a12, a13, a2, a3; a11 = 1.26; // 1.08, 1.16 a12 = 1.; // 1.08, 1.16 a13 = 1.12; // 1.08, 1.16 a2 = 1.1; a3 = 1.; if( A < 50. ) { if( 10 < A && A <= 15. ) r0 = a11*( 1 - std::pow(A, -2./3.) )*fermi; // 1.08*fermi; else if( 15 < A && A <= 20 ) r0 = a12*( 1 - std::pow(A, -2./3.) )*fermi; else if( 20 < A && A <= 30 ) r0 = a13*( 1 - std::pow(A, -2./3.) )*fermi; else r0 = a2*fermi; R = r0*std::pow( A, 1./3. ); } else { r0 = a3*fermi; R = r0*std::pow(A, 0.27); } return R; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GGNuclNuclCrossSection::CalculateEcmValue( const G4double mp , const G4double mt , const G4double Plab ) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); // G4double Pcm = Plab * mt / Ecm; // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; return Ecm ; // KEcm; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GGNuclNuclCrossSection::CalcMandelstamS( const G4double mp , const G4double mt , const G4double Plab ) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double sMand = mp*mp + mt*mt + 2*Elab*mt ; return sMand; } // // ///////////////////////////////////////////////////////////////////////////////////////