// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // 17.07.06 V. Grichine - first implementation // 22.01.07 V.Ivanchenko - add interface with Z and A // 05.03.07 V.Ivanchenko - add IfZAApplicable // #include "G4GlauberGribovCrossSection.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" #include "G4ParticleDefinition.hh" ////////////////////////////////////////////////////////////////////////////////////// // // const G4double G4GlauberGribovCrossSection::fNeutronBarCorrectionTot[93] = { 1.0, 1.0, 1.118517e+00, 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00, 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00, 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00, 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00, 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00, 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00, 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00, 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00, 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00, 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00, 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00, 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00, 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00, 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00, 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00, 1.037075e+00, 1.034721e+00 }; const G4double G4GlauberGribovCrossSection::fNeutronBarCorrectionIn[93] = { 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00, 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00, 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00, 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00, 1.131515e+00, 1.130338e+00, 1.134171e+00, 1.139206e+00, 1.141474e+00, 1.142189e+00, 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00, 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00, 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00, 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00, 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00, 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00, 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00, 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00, 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00, 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00, 1.046435e+00, 1.042614e+00 }; const G4double G4GlauberGribovCrossSection::fProtonBarCorrectionTot[93] = { 1.0, 1.0, 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00, 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00, 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00, 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00, 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00, 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00, 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00, 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00, 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00, 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00, 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00, 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00, 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00, 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00, 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00, 1.034720e+00 }; const G4double G4GlauberGribovCrossSection::fProtonBarCorrectionIn[93] = { 1.0, 1.0, 1.167419e+00, 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00, 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00, 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00, 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00, 1.130337e+00, 1.134170e+00, 1.139205e+00, 1.141472e+00, 1.142188e+00, 1.140724e+00, 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00, 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00, 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00, 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00, 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00, 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00, 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00, 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00, 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00, 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00, 1.042613e+00 }; const G4double G4GlauberGribovCrossSection::fPionPlusBarCorrectionTot[93] = { 1.0, 1.0, 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00, 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00, 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00, 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00, 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00, 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00, 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00, 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00, 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00, 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00, 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00, 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00, 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00, 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00, 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00, 1.152974e+00 }; const G4double G4GlauberGribovCrossSection::fPionPlusBarCorrectionIn[93] = { 1.0, 1.0, 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.044495e+00, 1.062622e+00, 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.065100e+00, 1.070480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00, 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00, 1.137312e+00, 1.126263e+00, 1.126459e+00, 1.115191e+00, 1.116986e+00, 1.117184e+00, 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00, 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00, 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00, 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00, 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00, 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00, 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00, 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00, 1.071107e+00, 1.069955e+00, 1.064856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00, 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00, 1.059658e+00 }; const G4double G4GlauberGribovCrossSection::fPionMinusBarCorrectionTot[93] = { 1.0, 1.0, 1.075927e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00, 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00, 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00, 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00, 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00, 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00, 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00, 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00, 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00, 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00, 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00, 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00, 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00, 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00, 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00, 1.157267e+00 }; const G4double G4GlauberGribovCrossSection::fPionMinusBarCorrectionIn[93] = { 1.0, 1.0, 1.140246e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.044514e+00, 1.062628e+00, 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00, 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00, 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00, 1.138502e+00, 1.127678e+00, 1.127244e+00, 1.116634e+00, 1.118347e+00, 1.118988e+00, 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00, 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00, 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00, 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00, 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00, 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00, 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00, 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00, 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00, 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00, 1.062699e+00 }; //////////////////////////////////////////////////////////////////////////////// // // G4GlauberGribovCrossSection::G4GlauberGribovCrossSection() : fUpperLimit( 100000 * GeV ), fLowerLimit( 3 * GeV ), fRadiusConst( 1.08*fermi ) // 1.1, 1.3 ? { theGamma = G4Gamma::Gamma(); theProton = G4Proton::Proton(); theNeutron = G4Neutron::Neutron(); theAProton = G4AntiProton::AntiProton(); theANeutron = G4AntiNeutron::AntiNeutron(); thePiPlus = G4PionPlus::PionPlus(); thePiMinus = G4PionMinus::PionMinus(); thePiZero = G4PionZero::PionZero(); theKPlus = G4KaonPlus::KaonPlus(); theKMinus = G4KaonMinus::KaonMinus(); theK0S = G4KaonZeroShort::KaonZeroShort(); theK0L = G4KaonZeroLong::KaonZeroLong(); theL = G4Lambda::Lambda(); theAntiL = G4AntiLambda::AntiLambda(); theSPlus = G4SigmaPlus::SigmaPlus(); theASPlus = G4AntiSigmaPlus::AntiSigmaPlus(); theSMinus = G4SigmaMinus::SigmaMinus(); theASMinus = G4AntiSigmaMinus::AntiSigmaMinus(); theS0 = G4SigmaZero::SigmaZero(); theAS0 = G4AntiSigmaZero::AntiSigmaZero(); theXiMinus = G4XiMinus::XiMinus(); theXi0 = G4XiZero::XiZero(); theAXiMinus = G4AntiXiMinus::AntiXiMinus(); theAXi0 = G4AntiXiZero::AntiXiZero(); theOmega = G4OmegaMinus::OmegaMinus(); theAOmega = G4AntiOmegaMinus::AntiOmegaMinus(); theD = G4Deuteron::Deuteron(); theT = G4Triton::Triton(); theA = G4Alpha::Alpha(); theHe3 = G4He3::He3(); } /////////////////////////////////////////////////////////////////////////////////////// // // G4GlauberGribovCrossSection::~G4GlauberGribovCrossSection() { } //////////////////////////////////////////////////////////////////////////////////////// // // G4bool G4GlauberGribovCrossSection::IsApplicable(const G4DynamicParticle* aDP, const G4Element* anElement) { return IsZAApplicable(aDP, anElement->GetZ(), anElement->GetN()); } //////////////////////////////////////////////////////////////////////////////////////// // // G4bool G4GlauberGribovCrossSection::IsZAApplicable(const G4DynamicParticle* aDP, G4double Z, G4double) { G4bool applicable = false; // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber(); G4double kineticEnergy = aDP->GetKineticEnergy(); const G4ParticleDefinition* theParticle = aDP->GetDefinition(); if ( ( kineticEnergy >= fLowerLimit && Z > 1.5 && // >= He ( theParticle == theAProton || theParticle == theGamma || theParticle == theKPlus || theParticle == theKMinus || theParticle == theSMinus) ) || ( kineticEnergy >= fLowerLimit && Z > 1.5 && // >= He ( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) ) ) applicable = true; return applicable; } //////////////////////////////////////////////////////////////////////////////////////// // // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to // Glauber model with Gribov correction calculated in the dipole approximation on // light cone. Gaussian density helps to calculate rest integrals of the model. // [1] B.Z. Kopeliovich, nucl-th/0306044 G4double G4GlauberGribovCrossSection:: GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement, G4double T) { return GetIsoZACrossSection(aParticle, anElement->GetZ(), anElement->GetN(), T); } //////////////////////////////////////////////////////////////////////////////////////// // // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to // Glauber model with Gribov correction calculated in the dipole approximation on // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model. // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above G4double G4GlauberGribovCrossSection:: GetIsoZACrossSection(const G4DynamicParticle* aParticle, G4double Z, G4double A, G4double) { G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio; G4double R = GetNucleusRadius(A); const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.4; cofTotal = 2.0; } else { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.2; cofTotal = 2.0; } // cofInelastic = 2.0; nucleusSquare = cofTotal*pi*R*R; // basically 2piRR ratio = sigma/nucleusSquare; xsection = nucleusSquare*std::log( 1. + ratio ); xsection *= GetParticleBarCorTot(theParticle, Z); fTotalXsc = xsection; fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; fInelasticXsc *= GetParticleBarCorIn(theParticle, Z); fElasticXsc = fTotalXsc - fInelasticXsc; G4double difratio = ratio/(1.+ratio); fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) ); sigma = GetHNinelasticXsc(aParticle, A, Z); ratio = sigma/nucleusSquare; fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; if (fElasticXsc < 0.) fElasticXsc = 0.; return xsection; } ////////////////////////////////////////////////////////////////////////// // // Return single-diffraction/inelastic cross-section ratio G4double G4GlauberGribovCrossSection:: GetRatioSD(const G4DynamicParticle* aParticle, G4double A, G4double Z) { G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; G4double R = GetNucleusRadius(A); const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.4; cofTotal = 2.0; } else { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.2; cofTotal = 2.0; } nucleusSquare = cofTotal*pi*R*R; // basically 2piRR ratio = sigma/nucleusSquare; fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; G4double difratio = ratio/(1.+ratio); fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) ); if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc; else ratio = 0.; return ratio; } ////////////////////////////////////////////////////////////////////////// // // Return suasi-elastic/inelastic cross-section ratio G4double G4GlauberGribovCrossSection:: GetRatioQE(const G4DynamicParticle* aParticle, G4double A, G4double Z) { G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; G4double R = GetNucleusRadius(A); const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.4; cofTotal = 2.0; } else { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.2; cofTotal = 2.0; } nucleusSquare = cofTotal*pi*R*R; // basically 2piRR ratio = sigma/nucleusSquare; fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; sigma = GetHNinelasticXsc(aParticle, A, Z); ratio = sigma/nucleusSquare; fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc; else ratio = 0.; if ( ratio < 0. ) ratio = 0.; return ratio; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to differnt parametrisations: // [2] E. Levin, hep-ph/9710546 // [3] U. Dersch, et al, hep-ex/9910052 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 G4double G4GlauberGribovCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHadronNucleonXsc( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to differnt parametrisations: // [2] E. Levin, hep-ph/9710546 // [3] U. Dersch, et al, hep-ex/9910052 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 G4double G4GlauberGribovCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4double xsection; G4double targ_mass = G4ParticleTable::GetParticleTable()-> GetIonTable()->GetIonMass( G4int(Zt+0.5) , G4int(At+0.5) ); targ_mass = 0.939*GeV; // ~mean neutron and proton ??? G4double proj_mass = aParticle->GetMass(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); sMand /= GeV*GeV; // in GeV for parametrisation proj_momentum /= GeV; const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if(theParticle == theGamma) { xsection = At*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525)); } else if(theParticle == theNeutron) // as proton ??? { xsection = At*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); } else if(theParticle == theProton) { xsection = At*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) ); // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) ); } else if(theParticle == theAProton) { xsection = At*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525)); } else if(theParticle == thePiPlus) { xsection = At*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525)); } else if(theParticle == thePiMinus) { // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) ); xsection = At*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525)); } else if(theParticle == theKPlus) { xsection = At*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525)); } else if(theParticle == theKMinus) { xsection = At*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525)); } else // as proton ??? { xsection = At*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); } xsection *= millibarn; return xsection; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf G4double G4GlauberGribovCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHadronNucleonXscPDG( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf // At = number of nucleons, Zt = number of protons G4double G4GlauberGribovCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4double xsection; G4double Nt = At-Zt; // number of neutrons if (Nt < 0.) Nt = 0.; G4double targ_mass = G4ParticleTable::GetParticleTable()-> GetIonTable()->GetIonMass( G4int(Zt+0.5) , G4int(At+0.5) ); targ_mass = 0.939*GeV; // ~mean neutron and proton ??? G4double proj_mass = aParticle->GetMass(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); sMand /= GeV*GeV; // in GeV for parametrisation // General PDG fit constants G4double s0 = 5.38*5.38; // in Gev^2 G4double eta1 = 0.458; G4double eta2 = 0.458; G4double B = 0.308; const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if(theParticle == theNeutron) // proton-neutron fit { xsection = Zt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); xsection += Nt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn } else if(theParticle == theProton) { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); } else if(theParticle == theAProton) { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2)); } else if(theParticle == thePiPlus) { xsection = At*( 20.86 + B*std::pow(std::log(sMand/s0),2.) + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2)); } else if(theParticle == thePiMinus) { xsection = At*( 20.86 + B*std::pow(std::log(sMand/s0),2.) + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2)); } else if(theParticle == theKPlus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theKMinus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theSMinus) { xsection = At*( 35.20 + B*std::pow(std::log(sMand/s0),2.) - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2)); } else if(theParticle == theGamma) // modify later on { xsection = At*( 0.0 + B*std::pow(std::log(sMand/s0),2.) + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2)); } else // as proton ??? { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); } xsection *= millibarn; // parametrised in mb return xsection; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database G4double G4GlauberGribovCrossSection::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHadronNucleonXscNS( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database G4double G4GlauberGribovCrossSection::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4double xsection(0), Delta, A0, B0; G4double hpXsc(0); G4double hnXsc(0); G4double Nt = At-Zt; // number of neutrons if (Nt < 0.) Nt = 0.; G4double targ_mass = G4ParticleTable::GetParticleTable()-> GetIonTable()->GetIonMass( G4int(Zt+0.5) , G4int(At+0.5) ); targ_mass = 0.939*GeV; // ~mean neutron and proton ??? G4double proj_mass = aParticle->GetMass(); G4double proj_energy = aParticle->GetTotalEnergy(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); sMand /= GeV*GeV; // in GeV for parametrisation proj_momentum /= GeV; proj_energy /= GeV; proj_mass /= GeV; // General PDG fit constants G4double s0 = 5.38*5.38; // in Gev^2 G4double eta1 = 0.458; G4double eta2 = 0.458; G4double B = 0.308; const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if(theParticle == theNeutron) { if( proj_momentum >= 10.) // if( proj_momentum >= 2.) { Delta = 1.; if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; if(proj_momentum >= 10.) { B0 = 7.5; A0 = 100. - B0*std::log(3.0e7); xsection = A0 + B0*std::log(proj_energy) - 11 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+ 0.93827*0.93827,-0.165); // mb } xsection *= Zt + Nt; } else { // nn to be pp if( proj_momentum < 0.73 ) { hnXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) ); } else if( proj_momentum < 1.05 ) { hnXsc = 23 + 40*(std::log(proj_momentum/0.73))* (std::log(proj_momentum/0.73)); } else // if( proj_momentum < 10. ) { hnXsc = 39.0+ 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15); } // pn to be np if( proj_momentum < 0.8 ) { hpXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0); } else if( proj_momentum < 1.4 ) { hpXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0); } else // if( proj_momentum < 10. ) { hpXsc = 33.3+ 20.8*(std::pow(proj_momentum,2.0)-1.35)/ (std::pow(proj_momentum,2.50)+0.95); } xsection = hpXsc*Zt + hnXsc*Nt; } } else if(theParticle == theProton) { if( proj_momentum >= 10.) // if( proj_momentum >= 2.) { Delta = 1.; if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; if(proj_momentum >= 10.) { B0 = 7.5; A0 = 100. - B0*std::log(3.0e7); xsection = A0 + B0*std::log(proj_energy) - 11 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+ 0.93827*0.93827,-0.165); // mb } xsection *= Zt + Nt; } else { // pp if( proj_momentum < 0.73 ) { hpXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) ); } else if( proj_momentum < 1.05 ) { hpXsc = 23 + 40*(std::log(proj_momentum/0.73))* (std::log(proj_momentum/0.73)); } else // if( proj_momentum < 10. ) { hpXsc = 39.0+ 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15); } // pn to be np if( proj_momentum < 0.8 ) { hnXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0); } else if( proj_momentum < 1.4 ) { hnXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0); } else // if( proj_momentum < 10. ) { hnXsc = 33.3+ 20.8*(std::pow(proj_momentum,2.0)-1.35)/ (std::pow(proj_momentum,2.50)+0.95); } xsection = hpXsc*Zt + hnXsc*Nt; // xsection = hpXsc*(Zt + Nt); // xsection = hnXsc*(Zt + Nt); } // xsection *= 0.95; } else if(theParticle == theAProton) { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2)); } else if(theParticle == thePiPlus) { if(proj_momentum < 0.4) { G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); hpXsc = Ex3+20.0; } else if(proj_momentum < 1.15) { G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75)); hpXsc = Ex4+14.0; } else if(proj_momentum < 3.5) { G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); hpXsc = Ex1+Ex2+27.5; } else // if(proj_momentum > 3.5) // mb { hpXsc = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43); } // pi+n = pi-p?? if(proj_momentum < 0.37) { hnXsc = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); } else if(proj_momentum<0.65) { hnXsc = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48)); } else if(proj_momentum<1.3) { hnXsc = 36.1+ 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); } else if(proj_momentum<3.0) { hnXsc = 36.1+0.079-4.313*std::log(proj_momentum)+ 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); } else // mb { hnXsc = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); } xsection = hpXsc*Zt + hnXsc*Nt; } else if(theParticle == thePiMinus) { // pi-n = pi+p?? if(proj_momentum < 0.4) { G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); hnXsc = Ex3+20.0; } else if(proj_momentum < 1.15) { G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75)); hnXsc = Ex4+14.0; } else if(proj_momentum < 3.5) { G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); hnXsc = Ex1+Ex2+27.5; } else // if(proj_momentum > 3.5) // mb { hnXsc = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43); } // pi-p if(proj_momentum < 0.37) { hpXsc = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); } else if(proj_momentum<0.65) { hpXsc = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48)); } else if(proj_momentum<1.3) { hpXsc = 36.1+ 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); } else if(proj_momentum<3.0) { hpXsc = 36.1+0.079-4.313*std::log(proj_momentum)+ 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); } else // mb { hpXsc = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); } xsection = hpXsc*Zt + hnXsc*Nt; } else if(theParticle == theKPlus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theKMinus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theSMinus) { xsection = At*( 35.20 + B*std::pow(std::log(sMand/s0),2.) - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2)); } else if(theParticle == theGamma) // modify later on { xsection = At*( 0.0 + B*std::pow(std::log(sMand/s0),2.) + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2)); } else // as proton ??? { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); } xsection *= millibarn; // parametrised in mb return xsection; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon inelastic cross-section based on proper parametrisation G4double G4GlauberGribovCrossSection::GetHNinelasticXsc(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHNinelasticXsc( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation G4double G4GlauberGribovCrossSection::GetHNinelasticXsc(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4ParticleDefinition* hadron = aParticle->GetDefinition(); G4double sumInelastic, Nt = At - Zt; if(Nt < 0.) Nt = 0.; if( hadron == theKPlus ) { sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt); } else { //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton); // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron); sumInelastic = Zt*GetHadronNucleonXscNS(aParticle, 1.0, 1.0); sumInelastic += Nt*GetHadronNucleonXscNS(aParticle, 1.0, 0.0); } return sumInelastic; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation G4double G4GlauberGribovCrossSection::GetHNinelasticXscVU(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding(); G4int absPDGcode = std::abs(PDGcode); G4double Elab = aParticle->GetTotalEnergy(); // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV; G4double Plab = aParticle->GetMomentum().mag(); // std::sqrt(Elab * Elab - 0.88); Elab /= GeV; Plab /= GeV; G4double LogPlab = std::log( Plab ); G4double sqrLogPlab = LogPlab * LogPlab; //G4cout<<"Plab = "< 1000 ) //------Projectile is baryon -------- { G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab; G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab; G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPP + NumberOfTargetNeutrons * XtotPN ); Xelastic = ( NumberOfTargetProtons * XelPP + NumberOfTargetNeutrons * XelPN ); } else if( PDGcode == 211 ) //------Projectile is PionPlus ------- { G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab; G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab; G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab; G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN ); Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN ); } else if( PDGcode == -211 ) //------Projectile is PionMinus ------- { G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab; G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab; G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab; G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN ); Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN ); } else if( PDGcode == 111 ) //------Projectile is PionZero ------- { G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+ 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi- G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+ 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi- G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+ 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+ 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN ); Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN ); } else if( PDGcode == 321 ) //------Projectile is KaonPlus ------- { G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab; G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab; G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab; G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN ); Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN ); } else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------ { G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab; G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab; G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab; G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN ); Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN ); } else if( PDGcode == 311 ) //------Projectile is KaonZero ------ { G4double XtotKP = ( 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+ 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K- G4double XtotKN = ( 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab + //K+ 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K- G4double XelKP = ( 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+ 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K- G4double XelKN = ( 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+ 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K- Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN ); Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN ); } else //------Projectile is undefined, Nucleon assumed { G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab; G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab; G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPP + NumberOfTargetNeutrons * XtotPN ); Xelastic = ( NumberOfTargetProtons * XelPP + NumberOfTargetNeutrons * XelPN ); } Xinelastic = Xtotal - Xelastic; if(Xinelastic < 0.) Xinelastic = 0.; return Xinelastic*= millibarn; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::GetNucleusRadius( const G4DynamicParticle* , const G4Element* anElement) { G4double At = anElement->GetN(); G4double oneThird = 1.0/3.0; G4double cubicrAt = std::pow (At, oneThird); G4double R; // = fRadiusConst*cubicrAt; /* G4double tmp = std::pow( cubicrAt-1., 3.); tmp += At; tmp *= 0.5; if (At > 20.) // 20. { R = fRadiusConst*std::pow (tmp, oneThird); } else { R = fRadiusConst*cubicrAt; } */ R = fRadiusConst*cubicrAt; G4double meanA = 21.; G4double tauA1 = 40.; G4double tauA2 = 10.; G4double tauA3 = 5.; G4double a1 = 0.85; G4double b1 = 1. - a1; G4double b2 = 0.3; G4double b3 = 4.; if (At > 20.) // 20. { R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) ); } else if (At > 3.5) { R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) ); } else { R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) ); } return R; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::GetNucleusRadius(G4double At) { G4double oneThird = 1.0/3.0; G4double cubicrAt = std::pow (At, oneThird); G4double R; // = fRadiusConst*cubicrAt; /* G4double tmp = std::pow( cubicrAt-1., 3.); tmp += At; tmp *= 0.5; if (At > 20.) { R = fRadiusConst*std::pow (tmp, oneThird); } else { R = fRadiusConst*cubicrAt; } */ R = fRadiusConst*cubicrAt; G4double meanA = 20.; G4double tauA = 20.; if (At > 20.) // 20. { R *= ( 0.8 + 0.2*std::exp( -(At - meanA)/tauA) ); } else { R *= ( 1.0 + 0.1*( 1. - std::exp( (At - meanA)/tauA) ) ); } return R; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::CalculateEcmValue( const G4double mp , const G4double mt , const G4double Plab ) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); // G4double Pcm = Plab * mt / Ecm; // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; return Ecm ; // KEcm; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::CalcMandelstamS( const G4double mp , const G4double mt , const G4double Plab ) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double sMand = mp*mp + mt*mt + 2*Elab*mt ; return sMand; } // // ///////////////////////////////////////////////////////////////////////////////////////