// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // 17.07.06 V. Grichine - first implementation // 22.01.07 V.Ivanchenko - add interface with Z and A // 05.03.07 V.Ivanchenko - add IfZAApplicable // #include "G4GlauberGribovCrossSection.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" #include "G4ParticleDefinition.hh" ////////////////////////////////////////////////////////////////////////////////////// // // G4GlauberGribovCrossSection::G4GlauberGribovCrossSection() : fUpperLimit( 10000 * GeV ), fLowerLimit( 3 * GeV ), fRadiusConst( 1.08*fermi ) // 1.1, 1.3 ? { theGamma = G4Gamma::Gamma(); theProton = G4Proton::Proton(); theNeutron = G4Neutron::Neutron(); theAProton = G4AntiProton::AntiProton(); theANeutron = G4AntiNeutron::AntiNeutron(); thePiPlus = G4PionPlus::PionPlus(); thePiMinus = G4PionMinus::PionMinus(); thePiZero = G4PionZero::PionZero(); theKPlus = G4KaonPlus::KaonPlus(); theKMinus = G4KaonMinus::KaonMinus(); theK0S = G4KaonZeroShort::KaonZeroShort(); theK0L = G4KaonZeroLong::KaonZeroLong(); theL = G4Lambda::Lambda(); theAntiL = G4AntiLambda::AntiLambda(); theSPlus = G4SigmaPlus::SigmaPlus(); theASPlus = G4AntiSigmaPlus::AntiSigmaPlus(); theSMinus = G4SigmaMinus::SigmaMinus(); theASMinus = G4AntiSigmaMinus::AntiSigmaMinus(); theS0 = G4SigmaZero::SigmaZero(); theAS0 = G4AntiSigmaZero::AntiSigmaZero(); theXiMinus = G4XiMinus::XiMinus(); theXi0 = G4XiZero::XiZero(); theAXiMinus = G4AntiXiMinus::AntiXiMinus(); theAXi0 = G4AntiXiZero::AntiXiZero(); theOmega = G4OmegaMinus::OmegaMinus(); theAOmega = G4AntiOmegaMinus::AntiOmegaMinus(); theD = G4Deuteron::Deuteron(); theT = G4Triton::Triton(); theA = G4Alpha::Alpha(); theHe3 = G4He3::He3(); } /////////////////////////////////////////////////////////////////////////////////////// // // G4GlauberGribovCrossSection::~G4GlauberGribovCrossSection() { } //////////////////////////////////////////////////////////////////////////////////////// // // G4bool G4GlauberGribovCrossSection::IsApplicable(const G4DynamicParticle* aDP, const G4Element* anElement) { return IsZAApplicable(aDP, anElement->GetZ(), anElement->GetN()); } //////////////////////////////////////////////////////////////////////////////////////// // // G4bool G4GlauberGribovCrossSection::IsZAApplicable(const G4DynamicParticle* aDP, G4double Z, G4double) { G4bool applicable = false; // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber(); G4double kineticEnergy = aDP->GetKineticEnergy(); const G4ParticleDefinition* theParticle = aDP->GetDefinition(); if ( ( kineticEnergy >= fLowerLimit && Z > 1.5 && // >= He ( theParticle == theAProton || theParticle == theGamma || theParticle == theKPlus || theParticle == theKMinus || theParticle == theSMinus) ) || ( kineticEnergy >= 0.1*fLowerLimit && Z > 1.5 && // >= He ( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) ) ) applicable = true; return applicable; } //////////////////////////////////////////////////////////////////////////////////////// // // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to // Glauber model with Gribov correction calculated in the dipole approximation on // light cone. Gaussian density helps to calculate rest integrals of the model. // [1] B.Z. Kopeliovich, nucl-th/0306044 G4double G4GlauberGribovCrossSection:: GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement, G4double T) { return GetIsoZACrossSection(aParticle, anElement->GetZ(), anElement->GetN(), T); } //////////////////////////////////////////////////////////////////////////////////////// // // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to // Glauber model with Gribov correction calculated in the dipole approximation on // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model. // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above G4double G4GlauberGribovCrossSection:: GetIsoZACrossSection(const G4DynamicParticle* aParticle, G4double Z, G4double A, G4double) { G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio; G4double R = GetNucleusRadius(A); const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.4; cofTotal = 2.0; } else { sigma = GetHadronNucleonXscPDG(aParticle, A, Z); cofInelastic = 2.2; cofTotal = 2.0; } // cofInelastic = 2.0; nucleusSquare = cofTotal*pi*R*R; // basically 2piRR ratio = sigma/nucleusSquare; xsection = nucleusSquare*std::log( 1. + ratio ); fTotalXsc = xsection; fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; fElasticXsc = fTotalXsc - fInelasticXsc; G4double difratio = ratio/(1.+ratio); fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) ); sigma = GetHNinelasticXsc(aParticle, A, Z); ratio = sigma/nucleusSquare; fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; if (fElasticXsc < 0.) fElasticXsc = 0.; return xsection; } ////////////////////////////////////////////////////////////////////////// // // Return single-diffraction/inelastic cross-section ratio G4double G4GlauberGribovCrossSection:: GetRatioSD(const G4DynamicParticle* aParticle, G4double A, G4double Z) { G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; G4double R = GetNucleusRadius(A); const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.4; cofTotal = 2.0; } else { sigma = GetHadronNucleonXscPDG(aParticle, A, Z); cofInelastic = 2.2; cofTotal = 2.0; } nucleusSquare = cofTotal*pi*R*R; // basically 2piRR ratio = sigma/nucleusSquare; fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; G4double difratio = ratio/(1.+ratio); fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) ); if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc; else ratio = 0.; return ratio; } ////////////////////////////////////////////////////////////////////////// // // Return suasi-elastic/inelastic cross-section ratio G4double G4GlauberGribovCrossSection:: GetRatioQE(const G4DynamicParticle* aParticle, G4double A, G4double Z) { G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; G4double R = GetNucleusRadius(A); const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if( theParticle == theProton || theParticle == theNeutron || theParticle == thePiPlus || theParticle == thePiMinus ) { sigma = GetHadronNucleonXscNS(aParticle, A, Z); cofInelastic = 2.4; cofTotal = 2.0; } else { sigma = GetHadronNucleonXscPDG(aParticle, A, Z); cofInelastic = 2.2; cofTotal = 2.0; } nucleusSquare = cofTotal*pi*R*R; // basically 2piRR ratio = sigma/nucleusSquare; fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; sigma = GetHNinelasticXsc(aParticle, A, Z); ratio = sigma/nucleusSquare; fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc; else ratio = 0.; if ( ratio < 0. ) ratio = 0.; return ratio; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to differnt parametrisations: // [2] E. Levin, hep-ph/9710546 // [3] U. Dersch, et al, hep-ex/9910052 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 G4double G4GlauberGribovCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHadronNucleonXsc( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to differnt parametrisations: // [2] E. Levin, hep-ph/9710546 // [3] U. Dersch, et al, hep-ex/9910052 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 G4double G4GlauberGribovCrossSection::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4double xsection; G4double targ_mass = G4ParticleTable::GetParticleTable()-> GetIonTable()->GetIonMass( G4int(Zt+0.5) , G4int(At+0.5) ); targ_mass = 0.939*GeV; // ~mean neutron and proton ??? G4double proj_mass = aParticle->GetMass(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); sMand /= GeV*GeV; // in GeV for parametrisation proj_momentum /= GeV; const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if(theParticle == theGamma) { xsection = At*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525)); } else if(theParticle == theNeutron) // as proton ??? { xsection = At*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); } else if(theParticle == theProton) { xsection = At*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) ); // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) ); } else if(theParticle == theAProton) { xsection = At*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525)); } else if(theParticle == thePiPlus) { xsection = At*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525)); } else if(theParticle == thePiMinus) { // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) ); xsection = At*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525)); } else if(theParticle == theKPlus) { xsection = At*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525)); } else if(theParticle == theKMinus) { xsection = At*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525)); } else // as proton ??? { xsection = At*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); } xsection *= millibarn; return xsection; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf G4double G4GlauberGribovCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHadronNucleonXscPDG( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf // At = number of nucleons, Zt = number of protons G4double G4GlauberGribovCrossSection::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4double xsection; G4double Nt = At-Zt; // number of neutrons if (Nt < 0.) Nt = 0.; G4double targ_mass = G4ParticleTable::GetParticleTable()-> GetIonTable()->GetIonMass( G4int(Zt+0.5) , G4int(At+0.5) ); targ_mass = 0.939*GeV; // ~mean neutron and proton ??? G4double proj_mass = aParticle->GetMass(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); sMand /= GeV*GeV; // in GeV for parametrisation // General PDG fit constants G4double s0 = 5.38*5.38; // in Gev^2 G4double eta1 = 0.458; G4double eta2 = 0.458; G4double B = 0.308; const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if(theParticle == theNeutron) // proton-neutron fit { xsection = Zt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); xsection += Nt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn } else if(theParticle == theProton) { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); } else if(theParticle == theAProton) { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2)); } else if(theParticle == thePiPlus) { xsection = At*( 20.86 + B*std::pow(std::log(sMand/s0),2.) + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2)); } else if(theParticle == thePiMinus) { xsection = At*( 20.86 + B*std::pow(std::log(sMand/s0),2.) + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2)); } else if(theParticle == theKPlus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theKMinus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theSMinus) { xsection = At*( 35.20 + B*std::pow(std::log(sMand/s0),2.) - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2)); } else if(theParticle == theGamma) // modify later on { xsection = At*( 0.0 + B*std::pow(std::log(sMand/s0),2.) + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2)); } else // as proton ??? { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); } xsection *= millibarn; // parametrised in mb return xsection; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database G4double G4GlauberGribovCrossSection::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHadronNucleonXscNS( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database G4double G4GlauberGribovCrossSection::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4double xsection(0), Delta, A0, B0; G4double hpXsc(0); G4double hnXsc(0); G4double Nt = At-Zt; // number of neutrons if (Nt < 0.) Nt = 0.; G4double targ_mass = G4ParticleTable::GetParticleTable()-> GetIonTable()->GetIonMass( G4int(Zt+0.5) , G4int(At+0.5) ); targ_mass = 0.939*GeV; // ~mean neutron and proton ??? G4double proj_mass = aParticle->GetMass(); G4double proj_energy = aParticle->GetTotalEnergy(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); sMand /= GeV*GeV; // in GeV for parametrisation proj_momentum /= GeV; proj_energy /= GeV; proj_mass /= GeV; // General PDG fit constants G4double s0 = 5.38*5.38; // in Gev^2 G4double eta1 = 0.458; G4double eta2 = 0.458; G4double B = 0.308; const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); if(theParticle == theNeutron) { if( proj_momentum >= 10.) // if( proj_momentum >= 2.) { Delta = 1.; if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; if(proj_momentum >= 10.) { B0 = 7.5; A0 = 100. - B0*std::log(3.0e7); xsection = A0 + B0*std::log(proj_energy) - 11 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+ 0.93827*0.93827,-0.165); // mb } xsection *= Zt + Nt; } else { // nn to be pp if( proj_momentum < 0.73 ) { hnXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) ); } else if( proj_momentum < 1.05 ) { hnXsc = 23 + 40*(std::log(proj_momentum/0.73))* (std::log(proj_momentum/0.73)); } else // if( proj_momentum < 10. ) { hnXsc = 39.0+ 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15); } // pn to be np if( proj_momentum < 0.8 ) { hpXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0); } else if( proj_momentum < 1.4 ) { hpXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0); } else // if( proj_momentum < 10. ) { hpXsc = 33.3+ 20.8*(std::pow(proj_momentum,2.0)-1.35)/ (std::pow(proj_momentum,2.50)+0.95); } xsection = hpXsc*Zt + hnXsc*Nt; } } else if(theParticle == theProton) { if( proj_momentum >= 10.) // if( proj_momentum >= 2.) { Delta = 1.; if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; if(proj_momentum >= 10.) { B0 = 7.5; A0 = 100. - B0*std::log(3.0e7); xsection = A0 + B0*std::log(proj_energy) - 11 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+ 0.93827*0.93827,-0.165); // mb } xsection *= Zt + Nt; } else { // pp if( proj_momentum < 0.73 ) { hpXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) ); } else if( proj_momentum < 1.05 ) { hpXsc = 23 + 40*(std::log(proj_momentum/0.73))* (std::log(proj_momentum/0.73)); } else // if( proj_momentum < 10. ) { hpXsc = 39.0+ 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15); } // pn to be np if( proj_momentum < 0.8 ) { hnXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0); } else if( proj_momentum < 1.4 ) { hnXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0); } else // if( proj_momentum < 10. ) { hnXsc = 33.3+ 20.8*(std::pow(proj_momentum,2.0)-1.35)/ (std::pow(proj_momentum,2.50)+0.95); } xsection = hpXsc*Zt + hnXsc*Nt; // xsection = hpXsc*(Zt + Nt); // xsection = hnXsc*(Zt + Nt); } // xsection *= 0.95; } else if(theParticle == theAProton) { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2)); } else if(theParticle == thePiPlus) { if(proj_momentum < 0.4) { G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); hpXsc = Ex3+20.0; } else if(proj_momentum < 1.15) { G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75)); hpXsc = Ex4+14.0; } else if(proj_momentum < 3.5) { G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); hpXsc = Ex1+Ex2+27.5; } else // if(proj_momentum > 3.5) // mb { hpXsc = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43); } // pi+n = pi-p?? if(proj_momentum < 0.37) { hnXsc = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); } else if(proj_momentum<0.65) { hnXsc = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48)); } else if(proj_momentum<1.3) { hnXsc = 36.1+ 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); } else if(proj_momentum<3.0) { hnXsc = 36.1+0.079-4.313*std::log(proj_momentum)+ 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); } else // mb { hnXsc = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); } xsection = hpXsc*Zt + hnXsc*Nt; } else if(theParticle == thePiMinus) { // pi-n = pi+p?? if(proj_momentum < 0.4) { G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); hnXsc = Ex3+20.0; } else if(proj_momentum < 1.15) { G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75)); hnXsc = Ex4+14.0; } else if(proj_momentum < 3.5) { G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); hnXsc = Ex1+Ex2+27.5; } else // if(proj_momentum > 3.5) // mb { hnXsc = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43); } // pi-p if(proj_momentum < 0.37) { hpXsc = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); } else if(proj_momentum<0.65) { hpXsc = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48)); } else if(proj_momentum<1.3) { hpXsc = 36.1+ 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); } else if(proj_momentum<3.0) { hpXsc = 36.1+0.079-4.313*std::log(proj_momentum)+ 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); } else // mb { hpXsc = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); } xsection = hpXsc*Zt + hnXsc*Nt; } else if(theParticle == theKPlus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theKMinus) { xsection = Zt*( 17.91 + B*std::pow(std::log(sMand/s0),2.) + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2)); xsection += Nt*( 17.87 + B*std::pow(std::log(sMand/s0),2.) + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2)); } else if(theParticle == theSMinus) { xsection = At*( 35.20 + B*std::pow(std::log(sMand/s0),2.) - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2)); } else if(theParticle == theGamma) // modify later on { xsection = At*( 0.0 + B*std::pow(std::log(sMand/s0),2.) + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2)); } else // as proton ??? { xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); } xsection *= millibarn; // parametrised in mb return xsection; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon inelastic cross-section based on proper parametrisation G4double G4GlauberGribovCrossSection::GetHNinelasticXsc(const G4DynamicParticle* aParticle, const G4Element* anElement ) { G4double At = anElement->GetN(); // number of nucleons G4double Zt = anElement->GetZ(); // number of protons return GetHNinelasticXsc( aParticle, At, Zt ); } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation G4double G4GlauberGribovCrossSection::GetHNinelasticXsc(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4ParticleDefinition* hadron = aParticle->GetDefinition(); G4double sumInelastic, Nt = At - Zt; if(Nt < 0.) Nt = 0.; if( hadron == theKPlus ) { sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt); } else { sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton); sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron); } return sumInelastic; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation G4double G4GlauberGribovCrossSection::GetHNinelasticXscVU(const G4DynamicParticle* aParticle, G4double At, G4double Zt ) { G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding(); G4int absPDGcode = std::abs(PDGcode); G4double Elab = aParticle->GetTotalEnergy(); // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV; G4double Plab = aParticle->GetMomentum().mag(); // std::sqrt(Elab * Elab - 0.88); Elab /= GeV; Plab /= GeV; G4double LogPlab = std::log( Plab ); G4double sqrLogPlab = LogPlab * LogPlab; //G4cout<<"Plab = "< 1000 ) //------Projectile is baryon -------- { G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab; G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab; G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPP + NumberOfTargetNeutrons * XtotPN ); Xelastic = ( NumberOfTargetProtons * XelPP + NumberOfTargetNeutrons * XelPN ); } else if( PDGcode == 211 ) //------Projectile is PionPlus ------- { G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab; G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab; G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab; G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN ); Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN ); } else if( PDGcode == -211 ) //------Projectile is PionMinus ------- { G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab; G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab; G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab; G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN ); Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN ); } else if( PDGcode == 111 ) //------Projectile is PionZero ------- { G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+ 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi- G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+ 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi- G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+ 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+ 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN ); Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN ); } else if( PDGcode == 321 ) //------Projectile is KaonPlus ------- { G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab; G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab; G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab; G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN ); Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN ); } else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------ { G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab; G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab; G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab; G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab; Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN ); Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN ); } else if( PDGcode == 311 ) //------Projectile is KaonZero ------ { G4double XtotKP = ( 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+ 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K- G4double XtotKN = ( 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab + //K+ 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K- G4double XelKP = ( 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+ 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K- G4double XelKN = ( 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+ 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K- Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN ); Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN ); } else //------Projectile is undefined, Nucleon assumed { G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab; G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab; G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab; Xtotal = ( NumberOfTargetProtons * XtotPP + NumberOfTargetNeutrons * XtotPN ); Xelastic = ( NumberOfTargetProtons * XelPP + NumberOfTargetNeutrons * XelPN ); } Xinelastic = Xtotal - Xelastic; if(Xinelastic < 0.) Xinelastic = 0.; return Xinelastic*= millibarn; } ///////////////////////////////////////////////////////////////////////////////////// // // Returns hadron-nucleon cross-section based on Mikhail Kossov CHIPS parametrisation of // data from G4QuasiFreeRatios class G4double G4GlauberGribovCrossSection::GetHadronNucleonXscMK(const G4DynamicParticle* aParticle, const G4ParticleDefinition* nucleon ) { G4int I = -1; G4int PDG = aParticle->GetDefinition()->GetPDGEncoding(); G4double totalXsc = 0; G4double elasticXsc = 0; G4double inelasticXsc; // G4int absPDG = std::abs(PDG); G4double p = aParticle->GetMomentum().mag()/GeV; G4bool F = false; if(nucleon == theProton) F = true; else if(nucleon == theNeutron) F = false; else { G4cout << "nucleon is not proton or neutron, return xsc for proton" << G4endl; F = true; } G4bool kfl = true; // Flag of K0/aK0 oscillation G4bool kf = false; if( PDG == 130 || PDG == 310 ) { kf = true; if( G4UniformRand() > .5 ) kfl = false; } if ( (PDG == 2212 && F) || (PDG == 2112 && !F) ) I = 0; // pp/nn else if( (PDG == 2112 && F) || (PDG == 2212 && !F) ) I = 1; // np/pn else if( (PDG == -211 && F) || (PDG == 211 && !F) ) I = 2; // pimp/pipn else if( (PDG == 211 && F) || (PDG ==-211 && !F) ) I = 3; // pipp/pimn else if( PDG == -321 || PDG == -311 || ( kf && !kfl ) ) I = 4; // KmN/K0N else if( PDG == 321 || PDG == 311 || ( kf && kfl ) ) I = 5; // KpN/aK0N else if( PDG > 3000 && PDG < 3335) I = 6; // @@ for all hyperons - take Lambda else if( PDG < -2000 && PDG > -3335) I = 7; // @@ for all anti-baryons - anti-p/anti-n else { G4cout<<"MK PDG = "<pma) { G4double lp = std::log(p)-lmi; G4double lp2 = lp*lp; elasticXsc = pbe*lp2 + 6.72; totalXsc = pbt*lp2 + 38.2; } else { G4double p2 = p*p; G4double LE = 1./( .00012 + p2*.2); G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; G4double rp2 = 1./p2; elasticXsc = LE + ( pbe*lp2 + 6.72+32.6/p)/( 1. + rp2/p); totalXsc = LE + ( pbt*lp2 + 38.2+52.7*rp2)/( 1. + 2.72*rp2*rp2); } } else if( I==1 ) // np/pn { if( p < pmi ) { G4double p2 = p*p; elasticXsc = 1./( .00012 + p2*( .051 + .1*p2)); totalXsc = elasticXsc; } else if( p > pma ) { G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; elasticXsc = pbe*lp2 + 6.72; totalXsc = pbt*lp2 + 38.2; } else { G4double p2 = p*p; G4double LE = 1./( .00012 + p2*( .051 + .1*p2 ) ); G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; G4double rp2 = 1./p2; elasticXsc = LE + (pbe*lp2 + 6.72 + 30./p)/( 1. + .49*rp2/p); totalXsc = LE + (pbt*lp2 + 38.2)/( 1. + .54*rp2*rp2); } } else if( I == 2 ) // pimp/pipn { G4double lp = std::log(p); if(p pma ) { G4double ld = lp - lmi; G4double ld2 = ld*ld; G4double sp = std::sqrt(p); elasticXsc = pbe*ld2 + 2.4 + 7./sp; totalXsc = pbt*ld2 + 22.3 + 12./sp; } else { G4double lr = lp + 1.27; G4double LE = 1.53/( lr*lr + .0676); G4double ld = lp - lmi; G4double ld2 = ld*ld; G4double p2 = p*p; G4double p4 = p2*p2; G4double sp = std::sqrt(p); G4double lm = lp + .36; G4double md = lm*lm + .04; G4double lh = lp - .017; G4double hd = lh*lh + .0025; elasticXsc = LE + (pbe*ld2 + 2.4 + 7./sp)/( 1. + .7/p4) + .6/md + .05/hd; totalXsc = LE*3 + (pbt*ld2 + 22.3 + 12./sp)/(1. + .4/p4) + 1./md + .06/hd; } } else if( I == 3 ) // pipp/pimn { G4double lp = std::log(p); if( p < pmi ) { G4double lr = lp + 1.27; G4double lr2 = lr*lr; elasticXsc = 13./( lr2 + lr2*lr2 + .0676); totalXsc = elasticXsc; } else if( p > pma ) { G4double ld = lp - lmi; G4double ld2 = ld*ld; G4double sp = std::sqrt(p); elasticXsc = pbe*ld2 + 2.4 + 6./sp; totalXsc = pbt*ld2 + 22.3 + 5./sp; } else { G4double lr = lp + 1.27; G4double lr2 = lr*lr; G4double LE = 13./(lr2 + lr2*lr2 + .0676); G4double ld = lp - lmi; G4double ld2 = ld*ld; G4double p2 = p*p; G4double p4 = p2*p2; G4double sp = std::sqrt(p); G4double lm = lp - .32; G4double md = lm*lm + .0576; elasticXsc = LE + (pbe*ld2 + 2.4 + 6./sp)/(1. + 3./p4) + .7/md; totalXsc = LE + (pbt*ld2 + 22.3 + 5./sp)/(1. + 1./p4) + .8/md; } } else if( I == 4 ) // Kmp/Kmn/K0p/K0n { if( p < pmi) { G4double psp = p*std::sqrt(p); elasticXsc = 5.2/psp; totalXsc = 14./psp; } else if( p > pma ) { G4double ld = std::log(p) - lmi; G4double ld2 = ld*ld; elasticXsc = pbe*ld2 + 2.23; totalXsc = pbt*ld2 + 19.5; } else { G4double ld = std::log(p) - lmi; G4double ld2 = ld*ld; G4double sp = std::sqrt(p); G4double psp = p*sp; G4double p2 = p*p; G4double p4 = p2*p2; G4double lm = p - .39; G4double md = lm*lm + .000156; G4double lh = p - 1.; G4double hd = lh*lh + .0156; elasticXsc = 5.2/psp + (pbe*ld2 + 2.23)/(1. - .7/sp + .075/p4) + .004/md + .15/hd; totalXsc = 14./psp + (pbt*ld2 + 19.5)/(1. - .21/sp + .52/p4) + .006/md + .30/hd; } } else if( I == 5 ) // Kpp/Kpn/aKp/aKn { if( p < pmi ) { G4double lr = p - .38; G4double lm = p - 1.; G4double md = lm*lm + .372; elasticXsc = .7/(lr*lr + .0676) + 2./md; totalXsc = elasticXsc + .6/md; } else if( p > pma ) { G4double ld = std::log(p) - lmi; G4double ld2 = ld*ld; elasticXsc = pbe*ld2 + 2.23; totalXsc = pbt*ld2 + 19.5; } else { G4double ld = std::log(p) - lmi; G4double ld2 = ld*ld; G4double lr = p - .38; G4double LE = .7/(lr*lr + .0676); G4double sp = std::sqrt(p); G4double p2 = p*p; G4double p4 = p2*p2; G4double lm = p - 1.; G4double md = lm*lm + .372; elasticXsc = LE + (pbe*ld2 + 2.23)/(1. - .7/sp + .1/p4) + 2./md; totalXsc = LE + (pbt*ld2 + 19.5)/(1. + .46/sp + 1.6/p4) + 2.6/md; } } else if( I == 6 ) // hyperon-N { if( p < pmi ) { G4double p2 = p*p; elasticXsc = 1./(.002 + p2*(.12 + p2)); totalXsc = elasticXsc; } else if( p > pma ) { G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; G4double sp = std::sqrt(p); elasticXsc = (pbe*lp2 + 6.72)/(1. + 2./sp); totalXsc = (pbt*lp2 + 38.2 + 900./sp)/(1. + 27./sp); } else { G4double p2 = p*p; G4double LE = 1./(.002 + p2*(.12 + p2)); G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; G4double p4 = p2*p2; G4double sp = std::sqrt(p); elasticXsc = LE + (pbe*lp2 + 6.72 + 99./p2)/(1. + 2./sp + 2./p4); totalXsc = LE + (pbt*lp2 + 38.2 + 900./sp)/(1. + 27./sp + 3./p4); } } else if( I == 7 ) // antibaryon-N { if( p > pma ) { G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; elasticXsc = pbe*lp2 + 6.72; totalXsc = pbt*lp2 + 38.2; } else { G4double ye = std::pow(p, 1.25); G4double yt = std::pow(p, .35); G4double lp = std::log(p) - lmi; G4double lp2 = lp*lp; elasticXsc = 80./(ye + 1.) + pbe*lp2 + 6.72; totalXsc = (80./yt + .3)/yt +pbt*lp2 + 38.2; } } else { G4cout<<"PDG incoding = "< totalXsc ) elasticXsc = totalXsc; totalXsc *= millibarn; elasticXsc *= millibarn; inelasticXsc = totalXsc - elasticXsc; if (inelasticXsc < 0.) inelasticXsc = 0.; return inelasticXsc; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::GetNucleusRadius( const G4DynamicParticle* , const G4Element* anElement) { G4double At = anElement->GetN(); G4double oneThird = 1.0/3.0; G4double cubicrAt = std::pow (At, oneThird); G4double R; // = fRadiusConst*cubicrAt; /* G4double tmp = std::pow( cubicrAt-1., 3.); tmp += At; tmp *= 0.5; if (At > 20.) // 20. { R = fRadiusConst*std::pow (tmp, oneThird); } else { R = fRadiusConst*cubicrAt; } */ R = fRadiusConst*cubicrAt; // return R; // !!!! G4double meanA = 21.; G4double tauA1 = 40.; G4double tauA2 = 10.; G4double tauA3 = 5.; G4double a1 = 0.85; G4double b1 = 1. - a1; G4double b2 = 0.3; G4double b3 = 4.; if (At > 20.) // 20. { R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) ); } else if (At > 3.5) { R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) ); } else { R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) ); } return R; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::GetNucleusRadius(G4double At) { G4double oneThird = 1.0/3.0; G4double cubicrAt = std::pow (At, oneThird); G4double R; // = fRadiusConst*cubicrAt; /* G4double tmp = std::pow( cubicrAt-1., 3.); tmp += At; tmp *= 0.5; if (At > 20.) { R = fRadiusConst*std::pow (tmp, oneThird); } else { R = fRadiusConst*cubicrAt; } */ R = fRadiusConst*cubicrAt; G4double meanA = 20.; G4double tauA = 20.; if (At > 20.) // 20. { R *= ( 0.8 + 0.2*std::exp( -(At - meanA)/tauA) ); } else { R *= ( 1.0 + 0.1*( 1. - std::exp( (At - meanA)/tauA) ) ); } return R; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::CalculateEcmValue( const G4double mp , const G4double mt , const G4double Plab ) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); // G4double Pcm = Plab * mt / Ecm; // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; return Ecm ; // KEcm; } //////////////////////////////////////////////////////////////////////////////////// // // G4double G4GlauberGribovCrossSection::CalcMandelstamS( const G4double mp , const G4double mt , const G4double Plab ) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double sMand = mp*mp + mt*mt + 2*Elab*mt ; return sMand; } // // ///////////////////////////////////////////////////////////////////////////////////////