// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // 18-Sep-2003 First version is written by T. Koi // 10-Nov-2003 Bug fix at Cal. ke_per_n and D T. Koi // 12-Nov-2003 Add energy check at lower side T. Koi // 26-Dec-2006 Add isotope dependence D. Wright #include "G4IonsKoxCrossSection.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" G4double G4IonsKoxCrossSection:: GetIsoZACrossSection(const G4DynamicParticle* aParticle, G4double ZZ, G4double AA, G4double /*temperature*/) { G4double xsection = 0.0; G4int Ap = aParticle->GetDefinition()->GetBaryonNumber(); G4int Zp = int ( aParticle->GetDefinition()->GetPDGCharge() / eplus + 0.5); G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; // Apply energy check, if less than lower limit then 0 value is returned // if ( ke_per_N < lowerLimit ) return xsection; G4int At = int (AA + 0.5); G4int Zt = int (ZZ + 0.5 ); G4double one_third = 1.0 / 3.0; G4double cubicrAt = std::pow ( G4double(At) , G4double(one_third) ); G4double cubicrAp = std::pow ( G4double(Ap) , G4double(one_third) ); G4double Bc = Zt * Zp / ( ( rc / fermi ) * ( cubicrAp + cubicrAt ) ); // rc divide fermi G4double targ_mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( Zt , At ); G4double proj_mass = aParticle->GetMass(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double Ecm = calEcm ( proj_mass , targ_mass , proj_momentum ); if( Ecm <= Bc) return xsection; G4double Rvol = r0 * ( cubicrAp + cubicrAt ); // G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; G4double c = calCeValue ( ke_per_N / MeV ); G4double a = 1.85; G4double Rsurf = r0 * ( a * cubicrAp * cubicrAt / ( cubicrAp + cubicrAt ) - c); G4double D = 5.0 * ( At - 2 * Zt ) * Zp / ( Ap * At ); Rsurf = Rsurf + D * fermi; // multiply D by fermi G4double Rint = Rvol + Rsurf; xsection = pi * Rint * Rint * ( 1 - Bc / ( Ecm / MeV ) ); return xsection; } G4double G4IonsKoxCrossSection:: GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement, G4double temperature) { G4int nIso = anElement->GetNumberOfIsotopes(); G4double xsection = 0; if (nIso) { G4double sig; G4IsotopeVector* isoVector = anElement->GetIsotopeVector(); G4double* abundVector = anElement->GetRelativeAbundanceVector(); G4double ZZ; G4double AA; for (G4int i = 0; i < nIso; i++) { ZZ = G4double( (*isoVector)[i]->GetZ() ); AA = G4double( (*isoVector)[i]->GetN() ); sig = GetIsoZACrossSection(aParticle, ZZ, AA, temperature); xsection += sig*abundVector[i]; } } else { xsection = GetIsoZACrossSection(aParticle, anElement->GetZ(), anElement->GetN(), temperature); } return xsection; } G4double G4IonsKoxCrossSection::calEcm ( G4double mp , G4double mt , G4double Plab ) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); G4double Pcm = Plab * mt / Ecm; G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; return KEcm; } G4double G4IonsKoxCrossSection::calCeValue( const G4double ke ) { // Calculate c value // This value is indepenent from projectile and target particle // ke is projectile kinetic energy per nucleon in the Lab system with MeV unit // fitting function is made by T. Koi // There are no data below 30 MeV/n in Kox et al., G4double Ce; G4double log10_ke = std::log10 ( ke ); if ( log10_ke > 1.5 ) { Ce = - 10.0 / std::pow ( G4double(log10_ke) , G4double(5) ) + 2.0; } else { Ce = ( - 10.0 / std::pow ( G4double(1.5) , G4double(5) ) + 2.0 ) / std::pow ( G4double(1.5) , G4double(3) ) * std::pow ( G4double(log10_ke) , G4double(3) ); } return Ce; }