| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // 18-Sep-2003 First version is written by T. Koi
|
|---|
| 27 | // 12-Nov-2003 Add energy check at lower side T. Koi
|
|---|
| 28 | // 15-Nov-2006 Above 10GeV/n Cross Section become constant T. Koi (SLAC/SCCS)
|
|---|
| 29 | // 23-Dec-2006 Isotope dependence adde by D. Wright
|
|---|
| 30 | //
|
|---|
| 31 |
|
|---|
| 32 | #include "G4IonsShenCrossSection.hh"
|
|---|
| 33 | #include "G4ParticleTable.hh"
|
|---|
| 34 | #include "G4IonTable.hh"
|
|---|
| 35 |
|
|---|
| 36 |
|
|---|
| 37 | G4double G4IonsShenCrossSection::
|
|---|
| 38 | GetIsoZACrossSection(const G4DynamicParticle* aParticle, G4double ZZ,
|
|---|
| 39 | G4double AA, G4double /*temperature*/)
|
|---|
| 40 | {
|
|---|
| 41 | G4double xsection = 0.0;
|
|---|
| 42 |
|
|---|
| 43 | G4int Ap = aParticle->GetDefinition()->GetBaryonNumber();
|
|---|
| 44 | G4int Zp = int ( aParticle->GetDefinition()->GetPDGCharge() / eplus + 0.5 );
|
|---|
| 45 | G4double ke_per_N = aParticle->GetKineticEnergy() / Ap;
|
|---|
| 46 | if ( ke_per_N > 10*GeV ) ke_per_N = 10*GeV;
|
|---|
| 47 |
|
|---|
| 48 | // Apply energy check, if less than lower limit then 0 value is returned
|
|---|
| 49 | // if ( ke_per_N < lowerLimit ) return xsection;
|
|---|
| 50 |
|
|---|
| 51 | G4int At = G4int(AA);
|
|---|
| 52 | G4int Zt = G4int(ZZ);
|
|---|
| 53 |
|
|---|
| 54 | G4double one_third = 1.0 / 3.0;
|
|---|
| 55 |
|
|---|
| 56 | G4double cubicrAt = std::pow ( G4double(At) , G4double(one_third) );
|
|---|
| 57 | G4double cubicrAp = std::pow ( G4double(Ap) , G4double(one_third) );
|
|---|
| 58 |
|
|---|
| 59 | G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1.0 / cubicrAt );
|
|---|
| 60 | G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1.0 / cubicrAp );
|
|---|
| 61 |
|
|---|
| 62 | G4double r = Rt + Rp + 3.2; // in fm
|
|---|
| 63 | G4double b = 1.0; // in MeV/fm
|
|---|
| 64 | G4double targ_mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( Zt , At );
|
|---|
| 65 | G4double proj_mass = aParticle->GetMass();
|
|---|
| 66 | G4double proj_momentum = aParticle->GetMomentum().mag();
|
|---|
| 67 |
|
|---|
| 68 | G4double Ecm = calEcmValue ( proj_mass , targ_mass , proj_momentum );
|
|---|
| 69 |
|
|---|
| 70 | G4double B = 1.44 * Zt * Zp / r - b * Rt * Rp / ( Rt + Rp );
|
|---|
| 71 | if(Ecm <= B) return xsection;
|
|---|
| 72 | //G4double ke_per_N = aParticle->GetKineticEnergy() / Ap;
|
|---|
| 73 |
|
|---|
| 74 | G4double c = calCeValue ( ke_per_N / MeV );
|
|---|
| 75 |
|
|---|
| 76 | G4double R1 = r0 * ( cubicrAt + cubicrAp + 1.85 * cubicrAt * cubicrAp / ( cubicrAt + cubicrAp ) - c);
|
|---|
| 77 |
|
|---|
| 78 | G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / ( Ap * At );
|
|---|
| 79 |
|
|---|
| 80 |
|
|---|
| 81 | G4double R3 = 0.176 / std::pow ( G4double(Ecm) , G4double(one_third) ) * cubicrAt * cubicrAp / ( cubicrAt + cubicrAp );
|
|---|
| 82 |
|
|---|
| 83 | G4double R = R1 + R2 + R3;
|
|---|
| 84 |
|
|---|
| 85 | xsection = 10 * pi * R * R * ( 1 - B / Ecm );
|
|---|
| 86 | xsection = xsection * millibarn; // mulitply xsection by millibarn
|
|---|
| 87 |
|
|---|
| 88 | return xsection;
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | G4double G4IonsShenCrossSection::
|
|---|
| 93 | GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement,
|
|---|
| 94 | G4double temperature)
|
|---|
| 95 | {
|
|---|
| 96 | G4int nIso = anElement->GetNumberOfIsotopes();
|
|---|
| 97 | G4double xsection = 0;
|
|---|
| 98 |
|
|---|
| 99 | if (nIso) {
|
|---|
| 100 | G4double sig;
|
|---|
| 101 | G4IsotopeVector* isoVector = anElement->GetIsotopeVector();
|
|---|
| 102 | G4double* abundVector = anElement->GetRelativeAbundanceVector();
|
|---|
| 103 | G4double ZZ;
|
|---|
| 104 | G4double AA;
|
|---|
| 105 |
|
|---|
| 106 | for (G4int i = 0; i < nIso; i++) {
|
|---|
| 107 | ZZ = G4double( (*isoVector)[i]->GetZ() );
|
|---|
| 108 | AA = G4double( (*isoVector)[i]->GetN() );
|
|---|
| 109 | sig = GetIsoZACrossSection(aParticle, ZZ, AA, temperature);
|
|---|
| 110 | xsection += sig*abundVector[i];
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 | } else {
|
|---|
| 114 | xsection =
|
|---|
| 115 | GetIsoZACrossSection(aParticle, anElement->GetZ(), anElement->GetN(),
|
|---|
| 116 | temperature);
|
|---|
| 117 | }
|
|---|
| 118 |
|
|---|
| 119 | return xsection;
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 |
|
|---|
| 123 | G4double G4IonsShenCrossSection::calEcmValue( const G4double mp , const G4double mt , const G4double Plab )
|
|---|
| 124 | {
|
|---|
| 125 | G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
|
|---|
| 126 | G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
|
|---|
| 127 | G4double Pcm = Plab * mt / Ecm;
|
|---|
| 128 | G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
|
|---|
| 129 | return KEcm;
|
|---|
| 130 | }
|
|---|
| 131 |
|
|---|
| 132 |
|
|---|
| 133 | G4double G4IonsShenCrossSection::calCeValue( const G4double ke )
|
|---|
| 134 | {
|
|---|
| 135 | // Calculate c value
|
|---|
| 136 | // This value is indepenent from projectile and target particle
|
|---|
| 137 | // ke is projectile kinetic energy per nucleon in the Lab system with MeV unit
|
|---|
| 138 | // fitting function is made by T. Koi
|
|---|
| 139 | // There are no data below 30 MeV/n in Kox et al.,
|
|---|
| 140 |
|
|---|
| 141 | G4double Ce;
|
|---|
| 142 | G4double log10_ke = std::log10 ( ke );
|
|---|
| 143 | if ( log10_ke > 1.5 )
|
|---|
| 144 | {
|
|---|
| 145 | Ce = - 10.0 / std::pow ( G4double(log10_ke) , G4double(5) ) + 2.0;
|
|---|
| 146 | }
|
|---|
| 147 | else
|
|---|
| 148 | {
|
|---|
| 149 | Ce = ( - 10.0 / std::pow ( G4double(1.5) , G4double(5) ) + 2.0 ) / std::pow ( G4double(1.5) , G4double(3) ) * std::pow ( G4double(log10_ke) , G4double(3) );
|
|---|
| 150 | }
|
|---|
| 151 | return Ce;
|
|---|
| 152 | }
|
|---|