// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // 18-Sep-2003 First version is written by T. Koi // 12-Nov-2003 Add energy check at lower side T. Koi // 15-Nov-2006 Above 10GeV/n Cross Section become constant T. Koi (SLAC/SCCS) // 23-Dec-2006 Isotope dependence adde by D. Wright // #include "G4IonsShenCrossSection.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" #include "G4HadTmpUtil.hh" G4double G4IonsShenCrossSection:: GetZandACrossSection(const G4DynamicParticle* aParticle, G4int ZZ, G4int AA, G4double /*temperature*/) { G4double xsection = 0.0; G4int Ap = aParticle->GetDefinition()->GetBaryonNumber(); G4int Zp = G4int(aParticle->GetDefinition()->GetPDGCharge()/eplus + 0.5 ); G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; if ( ke_per_N > 10*GeV ) ke_per_N = 10*GeV; // Apply energy check, if less than lower limit then 0 value is returned // if ( ke_per_N < lowerLimit ) return xsection; G4int At = AA; G4int Zt = ZZ; G4double one_third = 1.0 / 3.0; G4double cubicrAt = std::pow ( G4double(At) , G4double(one_third) ); G4double cubicrAp = std::pow ( G4double(Ap) , G4double(one_third) ); G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1.0 / cubicrAt ); G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1.0 / cubicrAp ); G4double r = Rt + Rp + 3.2; // in fm G4double b = 1.0; // in MeV/fm G4double targ_mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Zt, At); G4double proj_mass = aParticle->GetMass(); G4double proj_momentum = aParticle->GetMomentum().mag(); G4double Ecm = calEcmValue (proj_mass, targ_mass, proj_momentum); G4double B = 1.44 * Zt * Zp / r - b * Rt * Rp / ( Rt + Rp ); if(Ecm <= B) return xsection; //G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; G4double c = calCeValue ( ke_per_N / MeV ); G4double R1 = r0 * (cubicrAt + cubicrAp + 1.85*cubicrAt*cubicrAp/(cubicrAt + cubicrAp) - c); G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / ( Ap * At ); G4double R3 = 0.176 / std::pow(G4double(Ecm), G4double(one_third)) * cubicrAt * cubicrAp /(cubicrAt + cubicrAp); G4double R = R1 + R2 + R3; xsection = 10 * pi * R * R * ( 1 - B / Ecm ); xsection = xsection * millibarn; // mulitply xsection by millibarn return xsection; } G4double G4IonsShenCrossSection:: GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement, G4double temperature) { G4int nIso = anElement->GetNumberOfIsotopes(); G4double xsection = 0; if (nIso) { G4double sig; G4IsotopeVector* isoVector = anElement->GetIsotopeVector(); G4double* abundVector = anElement->GetRelativeAbundanceVector(); G4int ZZ; G4int AA; for (G4int i = 0; i < nIso; i++) { ZZ = (*isoVector)[i]->GetZ(); AA = (*isoVector)[i]->GetN(); sig = GetZandACrossSection(aParticle, ZZ, AA, temperature); xsection += sig*abundVector[i]; } } else { G4int ZZ = G4lrint(anElement->GetZ()); G4int AA = G4lrint(anElement->GetN()); xsection = GetZandACrossSection(aParticle, ZZ, AA, temperature); } return xsection; } G4double G4IonsShenCrossSection::calEcmValue(const G4double mp, const G4double mt, const G4double Plab) { G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); G4double Pcm = Plab * mt / Ecm; G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; return KEcm; } G4double G4IonsShenCrossSection::calCeValue(const G4double ke) { // Calculate c value // This value is indepenent from projectile and target particle // ke is projectile kinetic energy per nucleon in the Lab system // with MeV unit // fitting function is made by T. Koi // There are no data below 30 MeV/n in Kox et al., G4double Ce; G4double log10_ke = std::log10 ( ke ); if (log10_ke > 1.5) { Ce = -10.0/std::pow(G4double(log10_ke), G4double(5)) + 2.0; } else { Ce = (-10.0/std::pow(G4double(1.5), G4double(5) ) + 2.0) / std::pow(G4double(1.5) , G4double(3)) * std::pow(G4double(log10_ke), G4double(3)); } return Ce; }