source: trunk/source/processes/hadronic/cross_sections/src/G4TripathiCrossSection.cc @ 846

Last change on this file since 846 was 819, checked in by garnier, 16 years ago

import all except CVS

File size: 6.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// Implementation of formulas in analogy to NASA technical paper 3621 by
27// Tripathi, et al.
28//
29// 26-Dec-2006 Isotope dependence added by D. Wright
30//
31
32#include "G4TripathiCrossSection.hh"
33#include "G4ParticleTable.hh"
34#include "G4IonTable.hh"
35#include "G4HadTmpUtil.hh"
36
37G4double G4TripathiCrossSection::
38GetIsoZACrossSection(const G4DynamicParticle* aPart, G4double ZZ, G4double AA, 
39                G4double /*temperature*/) 
40{
41  G4double result = 0;
42 
43  const G4double targetAtomicNumber = AA;
44  const G4double nTargetProtons = ZZ;
45 
46  const G4double kineticEnergy = aPart->GetKineticEnergy()/MeV;
47  const G4double nProjProtons = aPart->GetDefinition()->GetPDGCharge();
48  const G4double projectileAtomicNumber = 
49                             aPart->GetDefinition()->GetBaryonNumber();
50
51  const G4double nuleonRadius=1.1E-15;
52  const G4double myNuleonRadius=1.36E-15;
53 
54  // needs target mass
55  G4double targetMass = 
56     G4ParticleTable::GetParticleTable()->GetIonTable()
57         ->GetIonMass(G4lrint(nTargetProtons), G4lrint(targetAtomicNumber));
58  G4LorentzVector pTarget(0,0,0,targetMass); 
59  G4LorentzVector pProjectile(aPart->Get4Momentum());
60  pTarget = pTarget+pProjectile;
61  G4double E_cm = (pTarget.mag()-targetMass-pProjectile.m())/MeV;
62 
63  // done
64  G4double r_rms_p = 0.6 * myNuleonRadius * 
65                                   std::pow(projectileAtomicNumber, 1./3.);
66  G4double r_rms_t = 0.6 * myNuleonRadius * 
67                                   std::pow(targetAtomicNumber, 1./3.);
68 
69  // done
70  G4double r_p = 1.29*r_rms_p/nuleonRadius ;
71  G4double r_t = 1.29*r_rms_t/nuleonRadius;
72 
73  // done
74  G4double Radius = r_p + r_t + 
75           1.2*(std::pow(targetAtomicNumber, 1./3.) + 
76            std::pow(projectileAtomicNumber, 1./3.))/std::pow(E_cm, 1./3.);
77
78  //done
79  G4double B = 1.44*nProjProtons*nTargetProtons/Radius;
80 
81  // done
82  G4double Energy = kineticEnergy/projectileAtomicNumber;
83
84  // done
85  //
86  // Note that this correction to G4TripathiCrossSection is just to accurately
87  // reflect Tripathi's algorithm.  However, if you're using alpha
88  // particles/protons consider using the more accurate
89  // G4TripathiLightCrossSection, which Tripathi developed specifically for
90  // light systems.
91  //
92
93  G4double D;
94  if (nProjProtons==1 && projectileAtomicNumber==1)
95  {
96    D = 2.05;
97  }
98  else if (nProjProtons==2 && projectileAtomicNumber==4)
99  {
100    D = 2.77-(8.0E-3*targetAtomicNumber)+
101          (1.8E-5*targetAtomicNumber*targetAtomicNumber)
102                   - 0.8/(1+std::exp((250.-Energy)/75.));
103  }
104  else
105  {
106  //
107  // This is the original value used in the G4TripathiCrossSection
108  // implementation, and was used for all projectile/target conditions. 
109  // I'm not touching this, although judging from Tripathi's paper, this is
110  // valid for cases where the nucleon density changes little with A.
111  //
112    D = 1.75;
113  }
114  // done
115  G4double C_E = D * (1-std::exp(-Energy/40.)) - 
116       0.292*std::exp(-Energy/792.)*std::cos(0.229*std::pow(Energy, 0.453));
117 
118  // done
119  G4double S = std::pow(projectileAtomicNumber, 1./3.)*
120               std::pow(targetAtomicNumber, 1./3.)/
121               (std::pow(projectileAtomicNumber, 1./3.) + 
122               std::pow(targetAtomicNumber, 1./3.)); 
123 
124  // done
125  G4double deltaE = 1.85*S + 0.16*S/std::pow(E_cm,1./3.) - C_E +
126                    0.91*(targetAtomicNumber-2.*nTargetProtons)*nProjProtons/
127                    (targetAtomicNumber*projectileAtomicNumber);
128 
129  // done
130  result = pi * nuleonRadius*nuleonRadius * 
131           std::pow(( std::pow(targetAtomicNumber, 1./3.) + 
132                 std::pow(projectileAtomicNumber, 1./3.) + deltaE),2.) * 
133                 (1-B/E_cm);
134 
135  if(result < 0) result = 0;
136  return result*m2;
137
138}
139
140
141G4double G4TripathiCrossSection::
142GetCrossSection(const G4DynamicParticle* aPart, const G4Element* anEle, 
143    G4double temperature)
144{
145  G4int nIso = anEle->GetNumberOfIsotopes();
146  G4double xsection = 0;
147     
148  if (nIso) {
149    G4double sig;
150    G4IsotopeVector* isoVector = anEle->GetIsotopeVector();
151    G4double* abundVector = anEle->GetRelativeAbundanceVector();
152    G4double ZZ;
153    G4double AA;
154     
155    for (G4int i = 0; i < nIso; i++) {
156      ZZ = G4double( (*isoVector)[i]->GetZ() );
157      AA = G4double( (*isoVector)[i]->GetN() );
158      sig = GetIsoZACrossSection(aPart, ZZ, AA, temperature);
159      xsection += sig*abundVector[i];
160    }
161   
162  } else {
163    xsection =
164      GetIsoZACrossSection(aPart, anEle->GetZ(), anEle->GetN(),
165                           temperature);
166  }
167
168  return xsection;
169}
Note: See TracBrowser for help on using the repository browser.